

Apresentação

Sistemas Operacionais

Universidade Federal de Uberlândia Faculdade de Computação Prof. Dr. rer. nat. Daniel D. Abdala

Nesta Aula

- Motivação acerca da disciplina;
- Apresentação:
 - dos pré-requisitos;
 - do plano de ensino;
 - do calendário da disciplina;
 - do sistemas de avaliação;
 - da bibliografia.

O que são SOs?

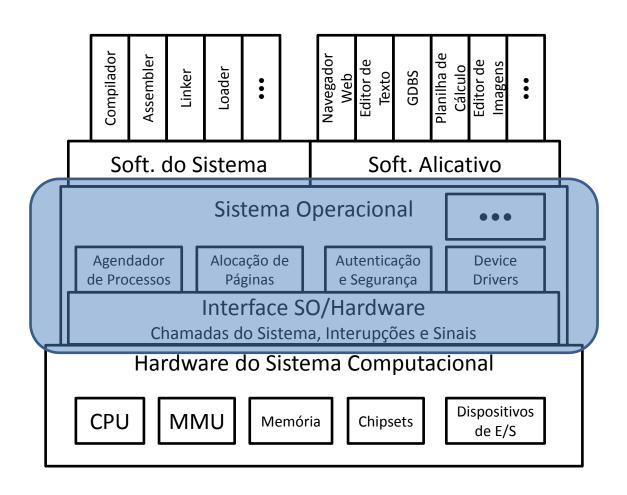
- SO é Software!
 - No entanto Hardware moderno é projetado com SOs em mente!
- Linux, FreeBSD, iOS, Android são SOs!
 - Citar exemplos não define o termo!
 - Difícil de definir → uma melhor pergunta:
 - Quais são as atribuições de um SO?

Atribuições do SO

- Depende do ponto de vista:
 - Ponto de Vista do Sistema:
 - Alocador de recursos;
 - Garante o funcionamento correto do Hardware;
 - Ponto de Vista do Usuário:
 - SO é um facilitador do uso do sistema computacional;
 - Usabilidade vs Utilização de Recursos.

O que são SOs?

- "SO atua como um intermediário entre o Hardware e o usuário".
- "SOs são uma coleção de programas que têm acesso direto ao Hardware do Computador".
- Visão Funcional:
 - Interface com o hardware
 - Interface com software aplicativo


Motivação – Porque SOs?

- Porque um aluno de Sistemas de informação deve conhecer Sistemas Operacionais?
 - Fundamental para o funcionamento de qualquer sistema computacional moderno;
 - Entender como os recursos do sistema são alocados permite ao projetista de software aplicativo desenvolver software mais eficiente;
 - Processos;
 - Memória;
 - Arquivos;
 - Autenticação e Segurança;
 - Entrada e Saída;
 - Rede;
 - etc...

O Computador como uma Pilha de Abstrações

Escopo nos SOs

Formas de Abordar o Assunto

Clássica

- A maioria dos cursos de SO seguem esta linha
- Abordagem puramente teórica
- Pseudo-algoritmos
- Desenvolvimento
 - Iniciou-se com a publicação do livro "Sistemas Operacionais:
 Projeto e Implementação" MINIX
 - Um SO minimalista é criado

Funcional

- Conceitos que permeiam os SOs são vistos de maneira teórica
- Um ou mais SOs são utilizados como base para aprendizado de como utilizar a interface/serviços do SO para desenvolvimento de aplicações

Pré-requisitos

- De acordo com o projeto pedagógico do curso:
 - Legalmente → Não obrigatórios
 - Pedagogicamente → indispensáveis!
- Programação em C
- Estruturas de Dados
- Arquitetura e Organização de Computadores

Plano de Ensino

- Introdução & Motivação;
- Histórico dos SOs;
- Estruturas dos SOs;
- Processos;
- Threads;
- Gerência de Memória;
- Sistema de Arquivos;
- Segurança e Controle de Acesso;
- Entrada e Saída de Dados;
- Detecção e Resolução de Deadlocks.

Calendário de Aulas ↔ Conteúdo

Aula	Data	Conteúdo Programático
1	08/08	Apresentação da Disciplina
2	09/08	Histórico dos Sistemas Operacionais
3	16/08	Estrutura dos Sistemas Operacionais
4	22/08	Revisão de Arquitetura e Organização de Computadores
5	23/08	Interrupções, Sinais e Temporizadores
6	29/08	Gerência de Processos
7	30/08	Processos no Linux
8	05/09	Escalonamento de Processos
9	06/09	Sincronização e Comunicação de/entre Processos
10	12/09	Threads (Kernel e Usuário)
11	13/09	Gerenciamento de Memória
12	19/09	Políticas de Alocação de Memória

Calendário de Aulas ↔ Conteúdo

Aula	Data	
13	20/09	Memória Virtual
14	26/09	Algoritmos de Substituição de Páginas
15	27/09	Questões de Implementação e Segmentação
16	03/10	Primeira Avaliação
17	04/10	Vista da primeira avaliação
18	10/10	Impases (Deadlocks)
19	11/10	Sistema de Arquivos
20	17/10	Implementação e Exemplos de Sistemas de Arquivos
21	18/10	Segurança em Sistemas de Arquivos
22	24/10	Integra UFU
23	25/10	Integra UFU
24	31/10	Sistemas de Arquivos no Linux

Calendário de Aulas ↔ Conteúdo

Aula	Data	
25	01/11	Alocação de Espaço em Disco
26	07/11	Gerência de Espaço Livre em Disco
27	08/11	E/S de Dados, Controladores e Driver de Dispositivo
28	21/11	E/S Programada
29	22/11	DMA – Acesso Direto a Memória
30	28/11	Organização de Discos Rígidos e Algoritmos
31	29/11	Entrada e Saída de Dados no Linux
32	05/12	Exercícios e Dúvidas
33	06/12	Segunda Avaliação
34	12/12	Vista da Segunda Avaliação / Dúvidas
35	13/12	Recuperação
36*	10/12	Estudo Dirigido: Comparativo entre SOs existentes.

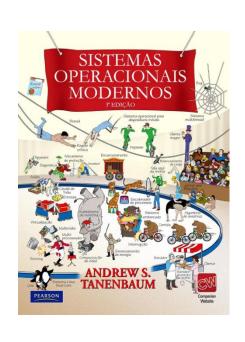
Sistema de Avaliação

- Duas provas (P₁ e P₂) valendo 100 pontos cada;
- 50% da nota final será atribuído a cada avaliação;
- Pontos extra: Estudo Dirigido (ED) e eventualmente algum outro trabalho (PE) a ser definido durante o semestre;
- A nota final é calculada pela equação abaixo: $NF = \min(0.5 \times P_1 + 0.5 \times P_2 + ED + PE,100)$
- Para alunos com NF no intervalo [20,59] será ofertada uma prova de recuperação (R) valendo 100 pontos. A nota final do semestre após a recuperação NF_R é calculada segundo a equação abaixo: $NF_R = \frac{NF + R}{2}$

_

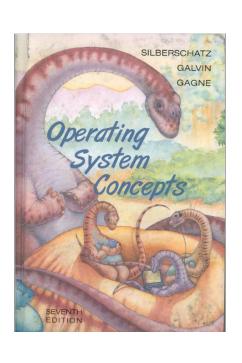
Suporte e Horário de Atendimento

- Dúvidas podem ser solucionadas via e-mail a qualquer momento: abdala@ufu.br
- Dúvidas também podem ser solucionadas presencialmente nos seguintes horários:
 - SEG: 19:00h ~ 20:40hTER: 10:40h ~ 12:20h
- Requer-se agendamento prévio para atendimento presencial. Um simples e-mail para o endereço acima citado basta.
- Uma confirmação de agendamento será enviada.
- Atendimento de dúvidas não é o mesmo que aula particular de reposição!
- Informação relevante acerca da disciplina pode ser encontrada no site:
 - www.facom.ufu.br/~abdala/GSI018
- Notas das avaliações serão afixadas na porta do gabinete do professor (1B121)

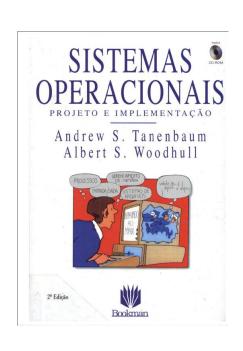

Bibliografia Básica

- Bibliografia recomendada:
 - Andrew S. Tanembaum. Sistemas Operacionais
 Modernos. 2ª Ed. Editora Pearson, 2003.
 - Abraham Silberschatz; Peter B. Galvin; Greg Gagne.
 Sistemas Operacionais com Java. 7º Ed. Editora Campus,
 2008.
 - Eleri Cardozo; Maurício Magalhães; Introdução aos
 Sistemas Operacionais. Dep de Eng. de Computação e
 Automação Industrial, Fac. De Engenharia Elétrica e de
 Computação, UNICAMP, 1992. FEEC/UNICAMP.

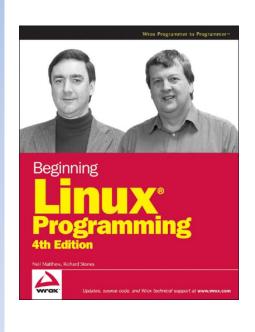
Bibliografia Complementar


- Bibliografia complementar:
 - Abraham Silberschatz; Peter B. Galvin; Greg Gagne.
 Fundamentos de Sistemas Operacionais. 6ª Ed. Editora LTC, 2004.
 - H. M. Deitel; J. M. Deitel; D. D. Choffnes. Sistemas
 Operacionais. 3ª Ed. Editora Pearson, 2005.
 - Andrew S. Tanembaum; Albert S. Woodhull. Sistemas
 Operacionais: Projeto e Implementação. 3ª Ed. Editora Bookman, 2008.
 - M. Ben-Ari. Principles of Concurrent and Distributed Programming. New York, NY, Prentice-Hall. 1990.
 - William S. Davis. Sistemas Operacionais: Uma Visão Sistemática. Rio de Janeiro, RJ, Campus, 1991.

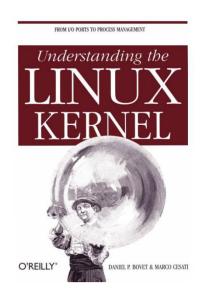
Bibliografia - Básica


- Ótimo livro texto;
- Referência básica para a disciplina;
- A disciplina é estruturada com base neste e no livro do Silberschatz;

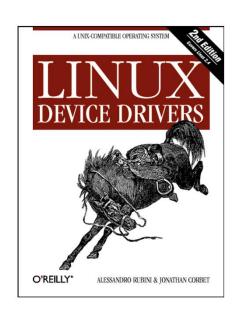
Bibliografia - Básica


- Ótimo livro texto;
- Referência básica para a disciplina;
- A disciplina é estruturada com base neste e no livro do Tanenbaum;

Bibliografia - Complementar


- Basicamente a mesma teoria contida no outro livro do Tanenbaum;
- Contém o código fonte completo do MINIX, um SO baseado no UNIX que obedece o padrão POSIX;

Bibliografia - Adicional


- Ótima referência introdutória sobre programação de chamadas do sistema em LINUX;
- Boa cobertura de processos.

Bibliografia - Adicional

- Melhor referência disponível acerca do kernel do linux;
- Cobre apenas os "melhores momentos".
 O kernel em si é muito extenso para ser completamente comentado;
- Ótima referência complementar para esta disciplina;
- Entender o código explicado neste livro provê ao estudante um melhor entendimento da linguagem C em si.

Bibliografia - Adicional

 Ótima referência para o desenvolvimento de controladores de dispositivos no linux.