

Anuran species recognition using a hierarchical classification approach

Juan G. Colonna¹², João Gama², and Eduardo F. Nakamura¹

¹Federal University of Amazonas (UFAM), Institute of Computing (Icomp)
²Laboratory of Artificial Intelligence and Decision Support (LIAAD), INESC Tec {juancolonna, nakamura}@icomp.ufam.edu.br jgama@fep.up.pt

Getting more from family, genus and species of frogs

Introduction - Why frogs?

- Anura is the name of an order of animals in the Amphibian class which lack a tail, this includes **frogs** and **toads**.

Why monitor populations of frogs?

Hypothesis: Tracking the changes in the anuran populations can help us to determine ecological problems in early stages.

It involves several manual tasks!

Proposal

Signal processing (SP) + Wireless Sensor Networks (WSN) + Machine Learning (ML)

Advantages: It is Automatic, less intrusive and allows long term monitoring.

How to do that?

- 1) Pre-processing:
 - a) Filter: band-pass filter, wavelet decomposition, etc.
 - b) Segmentation: syllable-based approach (x_k)
- 2) Feature Extraction: that maps $x_{k} \rightarrow c_{k}$
 - a) Mel-frequency cepstral coefficients (MFCCs)
 - b) Spectral centroid, Spectral bandwidth, Pitch, etc.
- 3) Recognition: ML technique to classify $c_{\mu} \rightarrow ID$ (species ID)
 - a) Support Vector Machine, kNN, Tree, etc.

Segmentation and feature extraction

Traditional Classification Approach

Dataset with:

- *k* samples (or syllables)
- l coefficients
- one label (s_j={j species})

Then, apply a "flat" classifier (kNN, SVM, etc.)

Problem: the number of classes grows together with the number of species who wish to recognize increasing the complexity of the model.

$$dataset = \begin{bmatrix} \mathbf{c}_1 = [c_1, c_2, \dots, c_l], & s \\ \mathbf{c}_2 = [c_1, c_2, \dots, c_l], & s \\ \vdots & \vdots \\ \mathbf{c}_k = [c_1, c_2, \dots, c_l], & s_j \end{bmatrix}$$

Knowledge organization

Carl Linnaeus has defined a particular form of biological organization called *taxonomy* in his work *Systema Naturae* (1735).

How to improve the classification using the taxonomy?

- The anura Order has **31 Families** (approximately)
- These Families are divided into several genus
- And finally, these genus are divided in almost 6000 species

Hypothesis: the phylogenetic taxonomy may describe similar calls among species that belong to the same genus and family².

Illustrative figure.

² B. Gingras and W. T. Fitch.
 A three-parameter model for classifying anurans into four genera based on advertisement calls.
 The Journal of the Acoustical Society of America, 133(1):547–559, 2013.

A Multi-output approach (multi-class and multi-label)

Extend the dataset incorporating the new labels:

- Label s_j = {j different species}
 Label g_i = {i different genus}
- > Label $f_m = \{m \text{ different families}\}$

$$\text{Multi-label dataset} = \begin{bmatrix} \mathbf{c}_1 = [c_1, c_2, \dots, c_l], & s, & g, & f \\ \mathbf{c}_2 = [c_1, c_2, \dots, c_l], & s, & g, & f \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{c}_k = [c_1, c_2, \dots, c_l], & s_j, & g_i, & f_m \end{bmatrix}$$

Hierarchical problem decomposition

- Use the taxonomy relation of the labels to build a tree.

Our dataset

Table 1: Species Dataset. The s and the k stands for the amount of specimens and syllables respectively.

Family	Genus	Species	\boldsymbol{s}	${m k}$
Leptodactylidae	Leptodactylus	Leptodactylus fuscus*	4	222
	Adenomera	Adenomera andreae*	8	496
		Adenomera hylaedactyla**	11	3049
Hylidae	Dendropsophus	Hyla minuta**	11	229
	Scinax	Scinax ruber**	5	96
	Osteocephalus	Osteocephalus oophagus*	3	96
	Hypsiboas	Hypsiboas cinerascens*	4	429
		Hypsiboas cordobae ⁺	4	702
Bufonidae	Rhinella	Rhinella granulosa*	5	135
Dendrobatidae	Ameerega	Ameerega trivittata**	5	544

- Indeed this is not a big-data dataset, but it is enough to prove our point.

Building our hierarchical classifier from our dataset

Benefit: One Classifier per Parent Node allows us to simplify the problem

Example: suppose that the first level decides in favor of the family *Bufonidae*. In this case there are no more splits in the tree, consequently it is not necessary to perform extra classifications to determine the species.

Hierarchical problem decomposition

Experiment configuration

- A kNN was chosen as base classifier in each node (k=3).
- We adapted the cross-validation procedure to group syllables by individuals to test how well our method generalize.
- The Average-accuracy was used in evaluations to avoid an artificially increment of the Micro-accuracy due to unbalanced number samples in each class.

Average-Acc =
$$\frac{1}{m} \sum_{i=1}^{m} Acc_i = \frac{1}{m} \sum_{i=1}^{m} \frac{tp_i}{k_i}$$

where Acc_i is the accuracy per row *i* of confusion matrix, *m* the total number of rows, tp_i are the true positives, and k_i the total number of syllables per row.

- Random Baseline:

- Micro-accuracy = 0.50 (dummy classifier)
- Average-accuracy = 0.10 (dummy classifier)

k-CV by Specimens (or individuals)

Common procedure found in the related works when syllable-based methodology is adopted.

Our Cross-Validation procedure by grouping syllables of the same individuals to test how well the model generalize.

Results per level

• Family Level (Acc = 76%)

Table 2. Confusion matrix of family level with kNN (k=3).

	Bufonidae	Dendrobatida	ae Hylidae L	eptodactylida	$e Acc_i$
Bufonidae	43	0	21	71	0.31
Dendrobatidae	27	$\boldsymbol{488}$	0	29	0.89
Hylidae	3	0	1465	84	0.94
Leptodactylidae	16	36	322	3393	0.90

Results per level

- Family Level (Acc = 76%)
- Genus Level (Acc = 61%)

Table 3. Confusion matrix of genus level with kNN (k=3). Legend: (a) Adenomera, (b) Ameerega, (c) Dendropsophus, (d) Hypsiboas, (e) Leptodactylus, (f) Osteocephalus, (g) Rhinella, and (h) Scinax.

	\mathbf{a}	b	\mathbf{c}	\mathbf{d}	e	f	g	h	Acc_i
a	3186	36	18	61	58	184	0	2	0.90
b	23	488	0	0	6	0	27	0	0.90
с	51	0	123	35	0	0	0	20	0.54
d	7	0	0	1117	0	6	0	1	0.99
e	15	0	20	14	134	21	16	2	0.60
f	7	0	0	48	4	34	3	0	0.35
g	8	0	0	9	63	0	43	12	0.32
h	15	0	50	11	0	0	0	20	0.21

Results per level

- Family Level (Acc = 76%)
- Genus Level (Acc = 61%)
- Species Level (Acc = 61%)

Table 4. Confusion matrix of species level with kNN (k=3). Legend: (a) Adenomera andreae, (b) Adenomera hylaedactyla, (c) Ameerega trivittata, (d) Hyla minuta, (e) Hypsiboas cinerascens, (f) Hypsiboas cordobae, (g) Leptodactylus fuscus, (h) Osteocephalus oophagus, (i) Rhinella granulosa, and (j) Scinax ruber.

	a	b	с	d	e	f	g	\mathbf{h}	i	j	Acc_i
a	156	0	35	2	61	0	58	184	0	0	0.31
\mathbf{b}	0	3030	1	16	0	0	0	0	0	2	0.99
с	23	0	488	0	0	0	6	0	27	0	0.90
\mathbf{d}	3	48	0	123	3	32	0	0	0	20	0.54
e	1	6	0	0	415	0	0	6	0	1	0.97
\mathbf{f}	0	0	0	0	0	702	0	0	0	0	1.00
g	1	14	0	20	0	14	134	21	16	2	0.60
\mathbf{h}	$\overline{7}$	0	0	0	48	0	4	34	3	0	0.35
i	8	0	0	0	6	3	63	0	43	12	0.32
j	0	15	0	50	9	2	0	0	0	20	0.21

Summary and conclusions

- The hierarchical approach effectively reduces the complexity of problems maintaining an acceptable accuracy.
- From a classification point of view the families Bufo, Hyla and Lepto were the most similar in the feature space, and also the species Adenomera andreae and Osteocephalus oophagus.
- > The Scinax species was the most difficult to recognize.
- The kCV by individuals (specimens) has an important impact in the model performance.
- > Baseline comparison against a dummy random classifier:
 - \circ Micro gain = +35% and Average gain = +50%

Future work: Implement soft decision rules in the tree to be able to correct the error propagation from the highest levels.

Thanks – Obrigado – Gracias

