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Introduction

Frequent pattern mining refers to finding patterns that occur
greater than a pre-specified threshold value.

Patterns refer to items, itemsets, or sequences.

Threshold refers to the percentage of the pattern occurrences
to the total number of transactions. It is termed as Support.
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Introduction

Finding frequent patterns is the first step for the discovery of
association rules in the form of A→ B.

Apriori algorithm represents a pioneering work for association
rules discovery
R Agrawal and R Srikant, Fast Algorithms for Mining Association Rules.
VLDB 2004.

An important step towards improving the performance of association rules
discovery was FP-Growth
J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate
Generation SIGMOD 2000
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Introduction

Many measurements have been proposed for finding the
strength of the rules.

The very frequently used measure is support.

The support Supp(X ) of an itemset X is defined as the
proportion of transactions in the data set which contain the
itemset.

Another frequently used measure is confidence.

Confidence refers to the probability that set B exists given that
A already exists in a transaction.
Confidence (A→ B) = Supp (AB) / Supp (A)
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Frequent Pattern Mining in Data Streams

The process of frequent pattern mining over data streams differs
from the conventional one as follows:

The technique should be linear or sublinear: You Have Only
One Look.

Frequent items, heavy hitters, and itemsets are often the final
output.
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Motivation

Slide from R. Motwani talk.
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Definitions

Given a stream S of m items 〈e1, e2, . . . em〉 the frequency of an
item e ∈ S is f (e) = |{ej ∈ S : ej = e}|.

The exact φ-frequent items are those with f (e) > φ×m,
with φ ≤ 1

The ε-approximate frequent items those with
f (e) > (φ− ε)×m, with φ ≤ 1
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Tasks

Main tasks:

Representing sets

Frequency estimates for all elements in the stream:
Sketch-based techniques: linear projection of the input

Count-min sketch
FM sketch

Top-k items:
Counter-based techniques:
monitor a subset of items

The Frequent Algorithm
The Space-Saving Algorithm
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Bloom Filters

Bloom, B. (1970), Space/time trade-offs in hash coding with allowable

errors, Communications of the ACM 13 (7)

A Bloom filter is a space-efficient probabilistic data structure
that is used to test whether an element is a member of a set.

A query returns either inside set (may be wrong) or definitely
not in set.

Elements can be added to the set.

Properties:

False positive retrieval results are possible, but false negatives
are not;
The more elements that are added to the set, the larger the
probability of false positives.
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Bloom Filters

Data Structure
An empty Bloom filter is a bit array of m bits, all set to 0.
There must also be k different hash functions defined, each of
which maps some element to one of the m array positions with
a uniform random distribution.

To add an element, feed it to each of the k hash functions to
get k array positions. Set the bits at all these positions to 1.

To query for an element (test whether it is in the set), feed it
to each of the k hash functions to get k array positions. If any
of the bits at these positions are 0, the element is definitely
not in the set.
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Bloom Filters

A Bloom filter of m bits, and k hash functions

The probability p of false positives is: ln(p) = −m
n ln(2)2, where n

is the number of inserted elements.



Frequent Pattern Mining Counting Algorithms Frequent Items Frequent Patterns References

Illustrative Problem

We manage mobile push notifications for our customers, and one of the things
we need to guard against is sending multiple notifications to the same user for
the same campaign. Push notifications are routed to individual devices/users
based on push notification tokens generated by the mobile platforms. Because
of their size (anywhere from 32b to 4kb), its non-performant for us to index
push tokens or use them as the primary user key.
On certain mobile platforms, when a user uninstalls and subsequently re-installs
the same app, we lose our primary user key and create a new user profile for
that device. Typically, in that case, the mobile platform will generate a new
push notification token for that user on the reinstall. However, that is not
always guaranteed. So, in a small number of cases we can end up with multiple
user records in our system having the same push notification token.

As a result, to prevent sending multiple notifications to the same user for the

same campaign, we need to filter for a relatively small number of duplicate

push tokens from a total dataset that runs from hundreds of millions to billions

of records. To give you a sense of proportion, the memory required to filter just

100 Million push tokens is 100M * 256 = 25 GB!



Frequent Pattern Mining Counting Algorithms Frequent Items Frequent Patterns References

The solution - Bloom filter

Allocate a bit array of size m. Choose k independent hash functions hi (x)
whose range is [0 . . .m − 1] For each data element, compute hashes and
turn on bits Bloom filter For membership query q, apply hashes and
check if all the corresponding bits are ’on’ Note that bits might be turned
’on’ by hash collisions leading to false positives; i.e a non-existing element
may be reported to exist and the goal is to minimise this.

On hash functions
Hash functions for Bloom filter should be independent and uniformly
distributed. Cryptographic hashes like MD5 or SHA1 are not good
choices for performance reasons. Some of the suitable fast hashes are
MurmurHash, FNV hashes and Jenkin’s Hashes.

We use MurmurHash
It’s fast: 10x faster than MD5
Good distribution: passes chi-squared test for uniformity
Avalanche effect: sensitive to even slightest input changes Independent
enough
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Sizing the Bloom filter

Sizing the bit array involves choosing optimal number of hash functions to
minimise false-positive probability.
With m bits, k hash functions and n elements, the false positive probability, i.e
the probability of all the corresponding k bits are ’on’, falsely when the element
does not exist
p = (1− [1− 1

m
]kn)k ≈ (1− e−

kn
m )k

for given m, n, optimal k that minimises p i.e
dp
dk

= 0 =⇒ k = m
n
ln(2) =⇒ m = − nln(p)

(ln(2))2

so, for 100 Million push tokens with 0.001 error probability
m = − 100000000∗ln(0.001)

(ln(2))2
= 171MB

This is significant improvement from 25 GB.
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The Top-k Elements Problem

Count the top-K most frequent elements in a stream.

First Approach

Maintain a count for each element of the alphabet.
Return the k first elements in the sorted list of counts.

Problems

Exact and Efficient solution for small alphabets.
Large alphabets: Space inefficient – large number of zero counts.
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The Frequent Algorithm

J. Misra and D. Gries, Finding repeated elements. Science of Computer

Programming, 1982.

Maintain partial information of interest; monitor only a subset m
of elements.

For each element e in the stream

If e is monitored: Increment Counte
Else

If there is a Countj == 0
Replace element j by e and initialize Counte = 1
Else Subtract 1 to each Counti
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The Space Saving Algorithm

Metwally, D. Agrawal, A. Abbadi, Efficient Computation of Frequent and Top-k

Elements in Data Streams, ICDT 2005

Maintain partial information of interest; monitor only a subset m
of elements.

For each element e in the stream

If e is monitored: Increment Counte
Else

Let em be the element with least hits min.
Replace em with e with counte = min + 1
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The Space Saving Algorithm: Insights

Efficient for skewed data!

Ensures no false negatives are kept in the top-k list:
no non frequent item is in the top-k list.

It allows false positive in the list:
some non frequent items appear in the list.

If the popular elements evolve over time, the elements that
are growing more popular will gradually be pushed to the top
of the list.
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The Space Saving Algorithm: Properties

The retrieval operation has a parameter ε ≥ 1/K , takes time
O(1/ε) and returns at time t a set of at most K pairs of the form
(x ; cx).
The key properties of the sketch are:

1 This set is guaranteed to contain every x such that
f (x) ≥ ε× t;

2 For each (x ; cx) in the set, 0 ≤ cx − f (x) ≥ t/K .
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The Space Saving Algorithm: Implementation
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The Count-Min Sketch

Cormode & Muthukrishnan. An improved data stream summary: The

count-min sketch and its applications. Journal of Algorithms, 2005.

Used to approximately solve: Point Queries, Range Queries, Inner
Product queries.

Simple sketch idea

Creates a small summary as an array of w × d in size
W = 2/ε, d = log(1/δ)

Use d hash functions to map vector entries to [1..w ]

Works on Insert-only and Insert-Delete model streams

W = 2/ε, d = log(1/δ)
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Count-Min Sketch

Example: Count the number of packets from the set of IPs that
cross a server in a network.

CM Sketch Update

Update:
Each entry in vector x is mapped to one bucket per row.
Increment the corresponding counter: CM[k, hk(j)]+ = 1.
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Count-Min Sketch

Example: Count the number of packets from the set of IPs that
cross a server in a network.

CM Sketch Query

Query: How many packets from IP j?
Estimate x̂ [j ] by taking minkCM[k , hk(j)]

The estimate guarantees:

x [j ] ≤ x̂ [j ]

x̂i ≤ ε× ||xi ||1, with probability 1− δ.
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FM Sketches

Count the Number of Distinct Values in a Stream

How many different IPs have been in observed in a stream of
TCP/IP packets?

Assume that the domain of the attribute is {0, 1, . . . ,M − 1}.
The problem is trivial if we have space linear in M.

Is there an approximate solution using space log(M)?
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FM Sketches for Distinct Value Estimation

Flajolet and Martin; Probabilistic Counting Algorithms for
DataBase Applications, JCSS, 1983

Maintain a Hash Sketch = BITMAP array of L bits,, where
L = O(log(M)), initialized to 0.

Assume a hash function h(x) that maps incoming values
x ∈ [0, . . . ,M − 1], uniformly across [0, . . . , 2(L−1)].

Let lsb(y) denote the position of the least-significant 1 bit in
the binary representation of y .

For each incoming value x , set BITMAP[lsb(h(x))] = 1.
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FM Sketches for Distinct Value Estimation

Example:

BITMAP:
5 4 3 2 1 0

0 0 0 0 0 0

x = 5→ h(x) = 101100→ lsb(h(x)) = 2

BITMAP:
5 4 3 2 1 0

0 0 0 1 0 0



Frequent Pattern Mining Counting Algorithms Frequent Items Frequent Patterns References

FM Sketches for Distinct Value Estimation

Example

Stream: 1,3,2,1,2,3,4,3,1,2,3,1,...
h(x) = 3x+1 mod 5

Processing the Stream

h(Stream)=4,5,2,4,2,5,3,5,4,2,5,4
lsb(h(x))=2,0,1,2,1,0,0,0,2,1,0,2

Result

5 4 3 2 1 0

0 0 0 1 1 1

R= 2 Output =4
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FM Sketches for Distinct Value Estimation

By uniformity through h(x):
P(BITMAP[k] = 1) = Prob(10k) = 1/2k+1

Let R be the position of the rightmost zero in BITMAP

R is an indicator of log(d)

Flajolet and Martin [FM85] prove that E [R] = log(φM),
where φ = .7735

Estimate of M = 2R/φ
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Frequent Items (Heavy Hitters) in Data Streams

Manku and Motwani have two master algorithms in this area:

Sticky Sampling

Lossy Counting

G. S. Manku and R. Motwani. Approximate Frequency Counts over Data
Streams, in Proceedings of the 28th International Conference on Very Large
Data Bases (VLDB), Hong Kong, China, August 2002.
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Sticky Sampling

Sticky sampling is a probabilistic technique.

The user inputs three parameters

Minimum Support(s)
Admissible Error (ε)
Probability of failure (δ)

A simple data structure is maintained that has entries of data
elements and their associated frequencies (e, f).

The sampling rate decreases gradually with the increase in the
number of processed data elements: t = 1

ε log(s−1δ−1)
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Sticky Sampling

For each incoming element in a data stream, the data
structure is checked for an entry

If an entry exists, then increment the frequency
Otherwise sample the element with the current sampling rate.
If selected, then add a new entry, else the element is ignored.

With every change in sampling rate, an unbiased coin toss is
done for each entry with decreasing the frequency with every
unsuccessful coin toss

If the frequency goes down to zero, the entry is released
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Sticky Sampling

Slide from R. Motwani talk.
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Lossy Counting

Lossy counting is a deterministic technique.

The user inputs two parameters

Minimum Support (s)
Admissible Error (ε)

The data structure has entries of data elements, their
associated frequencies (e, f, 4) where 4 is the maximum
possible error in f.

The stream is conceptually divided into buckets with a width
w = 1/ε.

Each bucket is labeled by a value of N/w , where N starts
from 1 and increases by 1.
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Lossy Counting

For a new incoming element, the data structure is checked

If an entry exists, then increment the frequency
Otherwise, add a new entry with 4 = bcurrent − 1 where
bcurrent is the current bucket label.

When switching to a new bucket, all entries with
f +4 < bcurrent are deleted.
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Lossy Counting: Example
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Lossy Counting: Example
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Lossy Counting: Example
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Error Analysis

Output:

Elements with counter values exceeding s × N − ε× N

How much do we undercount?

If the current size of stream is N and window-size = 1/ε then
frequency error ≤ #window = ε× N

Approximation guarantees:

Frequencies underestimated by at most ε× N

No false negatives

False positives have true frequency at least s × N − ε× N

How many counters do we need?

Worst case: 1/εlog(εN) counters
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Frequent Itemsets in Data Streams

Manku and Motwani has extended Lossy Counting to find frequent
itemsets.
G. S. Manku and R. Motwani. Approximate Frequency Counts over Data
Streams, VLDB 2002

The technique follows the same steps with batch processing of
transactions according to memory availability.

All subsets of the stored batch are checked and pruned.

If the frequency of a new entry is greater than the number of buckets
currently in memory, then a new entry is added to the data structure.
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Pattern mining: definitions

Patterns: sets with a subpattern relation ⊂

{cheese,milk} ⊂ {milk, peanuts, cheese, butter}

(search?buy) ⊂ (home?search?cart?buy?exit)

Applications: market basket analysis, intrusion detection, churn
prediction, feature selection, XML query analysis, query and
clickstream analysis, anomaly detection . . .
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Pattern mining in streams: definitions

The support of a pattern T in a stream S at time t is the
probability that a pattern T ′ drawn from S ′s distribution at
time t is such that T ⊂ T ′

Typical task: Given access to S , at all times t, produce the
set of patterns T with support at least ε at time t

A pattern is closed if no superpattern has the same support.

No information is lost if we focus only on closed patterns.
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Key data structure: Lattice of patterns, with counts
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Fundamentals

A priori property: t ⊆ t ′ ⇒ support(t) ≥ support(t ′)

Closed: none of its supersets has the same support
Can generate all freq. itemsets and their support

Maximal: none of its supersets is frequent
Can generate all freq. itemsets (without support)

Maximal ⊆ Closed ⊆ Frequent ⊆ D
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Base Algorithms

Apriori: uses a generate-and-test approach: generates
candidate itemsets and tests if they are frequent

Generation of itemsets is expensive (in both space and time)
Support counting is expensive

Subset checking (computationally expansive)
Multiple Database scans

FP-Growth: (J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns

without Candidate Generation SIGMOD 2000)

Allows frequent itemset discovery without candidate itemset
generation. Two step approach:

Step 1: Built a compact data structure called FP-tree
Built using 2 scans over the data set
Step 2: Extracts frequent itemsets directly from the FP-tree
Traversal through FP-tree.



Frequent Pattern Mining Counting Algorithms Frequent Items Frequent Patterns References

Core Data Structure: FP-Tree

Nodes corresponds to items and have
a counter;

FP-growth reads one transaction at a
time and maps it to a path;

Fixed order is used, so paths can
overlap when transactions share items
(when they have the same prefix).

In this case, counters are incremented;

Pointers are maintained between
nodes containing the same item,
creating singly linked lists (dotted
lines);

The more paths that overlap, the
higher the compression. FP-tree may
fit in memory;

Frequent itemsets extracted from the
FP-tree.
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Step 1: FP-Tree Construction

FP-Tree is constructed using 2 scans over the data set:

Pass 1:
Scan data and find support for each item;
Discard infrequent items;
Sort frequent items in decreasing order based on their support;
Use this order when building the FP-Tree, so common prefixes
can be shared.
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Step 1: FP-Tree Construction (Example)

Pass 2: construct the FP-Tree (see diagram on next slide)
Read transaction 1: {a,b}

Create 2 nodes a, and b and the path null → a→ b
Set counts a and b to 1.

Read transaction 2: {b,c,d}
Create 3 nodes b, c and d and the path null → b → c → d
Set counts to 1
Although transactions 1 and 2 share b, the path are disjoint as
they don’t share a common prefix. Add the link between the
b’s.

Read transaction 3: {a,c,d,e}
It shares common prefix, item a with transaction 1 so the path
for transaction 1 and 3 will overlap and the frequency count
for node a will be incremented by 1. Add links between the c’s
and d’s.
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Step 1: FP-Tree Construction
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Step 2: Frequent Itemset Generation

FP-Growth extracts frequent itemsets from the FP-Tree

Bottom-up algorithm - from the leaves towards the root

Divide and conquer: first look for frequet itemsets ending in e,
then de, etc ... then d, then cd, etc.

First, extract prefix path sub-trees ending in an item(set).
(Hint: use the linked lists.)
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Step 2: Frequent Itemset Generation

Each prefix path sub-tree is processed recursively to extract
frequent itemsets. Solutions are then merged.

E.g. the prefix path sub-tree for e will be used to extract
frequent itemsets ending in e, then in de,ce,be, and ae, etc.
Divide and conquer approach
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Step 2: Frequent Itemset Generation: Example

Let minSup = 2 and extract all frequent itemsets containing e.

1 Obtain the prefix path sub-tree for e:

2 Check if e is a frequent item by adding the counts along the
linked list (dotted line). If so, extract it.

Yes, count=3 so {e} is extracted as a frequent itemset.

3 As e is frequent, find frequent itemsets ending in e, i.e
de,ce,be, and ae.

i.e. decompose the problem recursively.
To do this, we must first to obtain the conditional FP-tree for
e.
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FP-Stream

C. Giannella, J. Han, J. Pei, X. Yan, P. S. Yu: Mining frequent
patterns in data streams at multiple time granularities. NGDM
(2003)

Multiple time granularities

Based on FP-Growth (depth-first search over itemset lattice)

Pattern-tree with Tilted-time window
Tilted-time window: logarithmically aggregated time slots (log
number of levels, aggregate when the level is full, push the
aggregate one level up)

Time sensitive queries, emphasis on recent history

High time and memory complexity
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Moment

Y. Chi , H. Wang, P. Yu , R. Muntz: Moment: Maintaining Closed

Frequent Itemsets over a Stream Sliding Window. ICDM 2004

Keeps track of boundary below frequent itemsets

Closed Enumeration Tree (CET) (≈ prefix tree)

Infrequent gateway nodes (infrequent)
Unpromising gateway nodes (infrequent, dominated)
Intermediate nodes (frequent, dominated)
Closed nodes (frequent)

By adding/removing transactions closed/infreq. do not
change
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Itemset mining

MOMENT (Chi+ 04) (Sliding window, frequent closed, exact)

CLOSTREAM (Yen+ 09) (Sliding window, all closed, exact)

MFI (Li+ 09) (Transaction-sensitive window, frequent closed,
exact)

IncMine (Cheng+ 08) (Sliding window, frequent closed,
approximate; faster for moderate approximate ratios)
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Sequence, trees, and graph mining

Frequent subsequence mining:
MILE (Chen+05), SMDS (Marascu-Masseglia 06), SSBE
(Koper-Nguyen 11)

Bifet+08: Frequent closed unlbeled subtree mining

Bifet+11: Frequent closed labeled subtree mining; Frequent
closed labeled subgraph mining
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