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Clustering

What is cluster analysis?

Grouping a set of data objects into a set of clusters,

the intra-cluster similarity is high and

the inter-cluster similarity is low

The quality of a clustering result depends on both the
similarity measure used

The quality of a clustering method is also measured by its
ability to discover some or all of the hidden patterns
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Illustrative Example: K-means

MacQueen 67: Each cluster is represented by the center of the
cluster
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K-Means for Streaming Data
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Illustrative Example: Hierarchical Clustering

Bottom-Up

Initial State: Each object is a group.
Iteratively join two groups in a single one.

Top-Down

Initial State: Single Group with all the objects.
Iteratively divide each group into two groups.
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Major Clustering Approaches

Partitioning algorithms: Construct various partitions and
then evaluate them by some criterion

E.g., k-means, k-medoids, etc.

Hierarchy algorithms: Create a hierarchical decomposition
of the set of data (or objects) using some criterion.

Often needs to integrate with other clustering methods, e.g.,
BIRCH

Density-based: based on connectivity and density functions

Finding clusters of arbitrary shapes, e.g., DBSCAN, OPTICS,
etc.

Grid-based: based on a multiple-level granularity structure

View space as grid structures, e.g., STING, CLIQUE

Model-based: find the best fit of the model to all the
clusters

Good for conceptual clustering, e.g., COBWEB, SOM
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Learning Algorithms: Desirable Properties

Processing each example:

Small constant time
Fixed amount of main memory
Single scan of the data
Without (or reduced) revisit old records.

Processing examples at the speed they arrive

Decision Models at anytime

Ideally, produce a model equivalent to the one that would be
obtained by a batch data-mining algorithm

Ability to detect and react to concept drift
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Clustering Data Streams

New requirements in stream clustering

Generate high-quality clusters in one scan
High quality, efficient incremental clustering
Analysis should take care of multi-dimensional space
Analysis for different time granularity
Tracking the evolution of clusters

Clustering: A stream data reduction technique
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Cluster Feature Vector

Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang,

Ramakrishnan, Livny 1996

Cluster Feature Vector: CF = (N, LS ,SS)

N: Number of data points

LS :
∑N

1 ~xi

SS :
∑N

1 (~xi )
2

Constant space irrespective to the number of examples!
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Micro clusters

The sufficient statistics of a cluster A are CFA = (N, LS ,SS).

N, the number of data objects,

LS, the linear sum of the data objects,

SS, the sum of squared the data objects.

Properties:

Centroid = LS/N

Radius =
√

SS/N − (LS/N)2

Diameter =
√

2×N∗SS−2×LS2

N×(N−1)
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Micro clusters

Given the sufficient statistics of a cluster A, CFA = (NA, LSA, SSA).
Updates are:

Incremental: a point x is added to the cluster:
LSA ← LSA + x ; SSA ← SSA + x2; NA ← NA + 1

Additive: merging clusters A and B:
LSC ← LSA + LSB ; SSC ← SSA + SSB ; NC ← NA + NB

Subtractive:
CF (C1 − C2) = CF (C1)− FV (C2)
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CluStream

CluStream: A Framework for Clustering Evolving Data Streams
(VLDB03)

Divide the clustering process into online and offline
components

Online: periodically stores summary statistics about the stream
data

Micro-clustering: better quality than k-means
Incremental, online processing and maintenance

Offline: answers various user queries based on the stored
summary statistics

Tilted time frame work: register dynamic changes

With limited overhead to achieve high efficiency, scalability,
quality of results and power of evolution/change detection
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CluStream: Online Phase

Inputs:

Maximum micro-cluster diameter Dmax

For each x in the stream:

Find the nearest micro-cluster Mi

IF the diameter of (Mi ∪ x) < Dmax

THEN assign x to that micro-cluster
Mi ← Mi ∪ x
ELSE Start a new micro-cluster based on x
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Pyramidal Time Frame

The micro-clusters are stored at snapshots.

When should we make the snapshot?

The snapshots follow a pyramidal pattern:
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Analysis

find the cluster structure in the current window,

find the cluster structure over time ranges with granularity
confined by the specification of window size and boundary,

put different weights on different windows to mine various
kinds of weighted cluster structures,

mine the evolution of cluster structures based on the changes
of their occurrences in a sequence of windows
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Any Time Stream Clustering

Properties of anytime algorithms

Deliver a model at any time

Improve the model if more time is available

Model adaptation whenever an instance arrives
Model refinement whenever time permits

ClusTree [Kranen et al., 2011]

an online component to learn micro-clusters

Any variety of online components can be utilized

Micro-clusters are subject to exponential aging
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MOA



Introduction Clustering Clustering Time Series References

Outline

1 Introduction

2 Clustering
Micro Clustering

3 Clustering Time Series
Growing the Structure
Adapting to Change
Properties of ODAC

4 References



Introduction Clustering Clustering Time Series References

Clustering Time Series Data Streams

Goal: Continuously maintain a clustering structure from evolving
time series data streams.

Ability to Incorporate new Information;

Process new Information at the rate it is available.

Ability to Detect and React to changes in the Cluster’s
Structure.

Clustering of variables (sensors) not examples!
The standard technique of transposing the working-matrix does
not work: transpose is a blocking operator!
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Online Divisive-Agglomerative Clustering

Online Divisive-Agglomerative Clustering, Rodrigues & Gama, 2008
Goal: Continuously maintain a hierarchical cluster’s structure from
evolving time series data streams.

Performs hierarchical clustering

Continuously monitor the evolution of clusters’ diameters

Two Operators:

Splitting: expand the structure
more data, more detailed clusters
Merge: contract the structure
reacting to changes.

Splitting and agglomerative criteria are supported by a
confidence level given by the Hoeffding bounds.
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Main Algorithm

ForEver

Read Next Example
For all the clusters

Update the sufficient statistics

Time to Time

Verify Merge Clusters
Verify Expand Cluster
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Feeding ODAC

Each example is processed once.
Only sufficient statistics at leaves are updated.
Sufficient Statistics: a triangular matrix of the correlations between
variables in a leaf.

Released when a leaf expands to a node.
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Similarity Distance

Distance between time Series: rnomc(a, b) =
√

1−corr(a,b)
2

where corr(a, b) is the Pearson Correlation coefficient:

corr(a, b) =
P−AB

n√
A2−A2

n

√
B2−B2

n

The sufficient statistics needed to compute the correlation are
easily updated at each time step:
A =

∑
ai , B =

∑
bi , A2 =

∑
a2i , B2 =

∑
b2i , P =

∑
aibi
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The Expand Operator: Expanding a Leaf

Step 1
Find Pivots:
xj , xk : d(xj , xk) > d(a, b)
∀a, b 6= j , k

Step 2
If Splitting Criteria applies:
Generate two new clusters.

Step 3
Each new cluster attract nearest
variables.
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Splitting Criteria

When should we expand a leaf?
Let

d1 = d(a, b) the farthest distance

d2 the second farthest distance

Question:

Is d1 a stable option?
what if we observe more examples?

Hoeffding bound:

Split if d1 − d2 > ε with ε =

√
R2ln(1/δ)

2n
where R is the range of the random variable; δ is a user confidence
level, and n is the number of observed data points.



Introduction Clustering Clustering Time Series References

Hoeffding bound

Suppose we have made n independent observations of a
random variable r whose range is R.

The Hoeffding bound states that:

With probability 1− δ
The true mean of r is in the range r ± ε where ε =

√
R2ln(1/δ)

2n

Independent of the probability distribution generating the
examples.
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The Expand Operator: Expanding a Leaf

Step 1
Find Pivots:
xj , xk : d(xj , xk) > d(a, b)
∀a, b 6= j , k

Step 2
If the Hoeffding bound applies:
Generate two new clusters.

Step 3
Each new cluster attract nearest
variables.
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Multi-Time-Windows

A multi-window system: each node (and leaves) receive
examples from different time-windows.
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The Merge Operator: Change Detection

Time Series Concept Drift:

Changes in the distribution generating the observations.

Clustering Concept Drift

Changing in the way time series correlate with each other
Change in the cluster Structure.
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The Merge Operator: Change Detection

The Splitting Criteria guarantees that cluster’s diameters
monotonically decrease.

Assume Clusters: cj with descendants ck and cs .

If diameter(ck)− diameter(cj) > ε OR
diameter(cs)− diameter(cj) > ε

Change in the correlation structure!
Merge clusters ck and cs into cj .
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Properties of ODAC

For stationary data the cluster’s diameters monotonically
decrease.

Constant update time/memory consumption with respect
to the number of examples!

Every time a split is reported

the time to process the next example decreases, and
the space used by the new leaves is less than that used by the
parent.

(a + b)2 > a2 + b2
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The Electrical Load Demand Problem



Introduction Clustering Clustering Time Series References

The Electrical Load Demand Problem
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Evolution of Processing Speed



Introduction Clustering Clustering Time Series References

Evolution of Memory Usage
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