
Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability

Eduardo Figueiredo1, Nelio Cacho1, Claudio Sant’Anna2, Mario Monteiro3, Uira Kulesza4,
Alessandro Garcia1, Sergio Soares3, Fabiano Ferrari1, Safoora Khan1, Fernando Filho3, Francisco Dantas5

1Computing Department, Lancaster University, United Kingdom
2Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Brazil

3Computer Science Department, Pernambuco State University, Brazil
4CITI/DI/FCT, Universidade Nova de Lisboa, Portugal

5Computer Science Department, State University of Rio Grande do Norte, Brazil

{e.figueiredo, n.cacho, a.garcia, f.ferrari, s.shakil-kahn}@lancaster.ac.uk, claudios@inf.puc-rio.br,
{mqm, sergio, fernando.castor}@dsc.upe.br, uira@di.fct.unl.pt, franciscodantas@uern.br

ABSTRACT
Software product lines (SPLs) enable modular, large-scale reuse
through a software architecture addressing multiple core and
varying features. To reap the benefits of SPLs, their designs need
to be stable. Design stability encompasses the sustenance of the
product line’s modularity properties in the presence of changes to
both the core and varying features. It is usually assumed that
aspect-oriented programming promotes better modularity and
changeability of product lines than conventional variability
mechanisms, such as conditional compilation. However, there is
no empirical evidence on its efficacy to prolong design stability of
SPLs through realistic development scenarios. This paper reports
a quantitative study that evolves two SPLs to assess various
design stability facets of their aspect-oriented implementations.
Our investigation focused upon a multi-perspective analysis of the
evolving product lines in terms of modularity, change
propagation, and feature dependency. We have identified a
number of scenarios which positively or negatively affect the
architecture stability of aspectual SPLs.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics-Product metrics; D.3.3
[Programming languages]: Language Constructs and Features

General Terms
Measurement, Design, Experimentation.

Keywords
Product lines, aspect-oriented programming, empirical evaluation.

1. INTRODUCTION
Software product lines (SPLs) [9, 23] represent an increasingly
popular technology to support the derivation of a wide range of
applications. They enable modular, large-scale reuse through a
core software architecture addressing recurring features in a
certain domain and multiple variability points. The design of
industrial SPLs is often incremental and gradually evolves to cope
with new stakeholders’ needs [1, 9, 18]. However, their longevity
is highly dependent on the ability of the implementation-level
variability mechanisms to sustain their architecture stability [1, 3,
4, 9, 16]. Ideally, the modular structure of the core and variable
features of a SPL should not succumb in the presence of change

requests. In fact, evolution of product lines imposes deep
concerns on software engineers due to the diverse nature of
certain frequent changes, such as: (i) introduction and removal of
crosscutting and non-crosscutting features, and (ii) the
transformation of mandatory features in optional or alternative
ones and vice-versa.

The inefficacy of the variability mechanisms to accommodate
changes might lead to several undesirable consequences related to
the product line stability, including invasive wide changes,
significant ripple effects, artificial dependences between core and
optional features, and unplugability of the optional code [1, 16].
Many authors [1, 3, 22] advocate that aspect-oriented
programming (AOP) [17] is an effective technique to support
feature variability and prolong the stability of product-line
designs. AOP is aimed at supporting the encapsulation of
crosscutting features into new modular units - the aspects -
through new composition mechanisms, such as pointcut-advice
and inter-type declarations. The intention is to make the variation
of crosscutting features more modular and evolvable when
compared to industry-strength conventional variability mecha-
nisms, such as conditional compilation [2].

Recent work has started to explore the use of AOP to improve the
isolation of specific features in designs of frameworks [19] and
product lines [16, 21]. However, none of them has analysed the
impact of AOP on heterogeneous evolution scenarios of program
families. Most of them are either of methodological nature [19] or
not focused on objectively assessing the role of AOP on
sustaining the SPL design's stability. They also do not investigate
to what extend ripple effects are reduced across the core
architecture and optional modules. In this context, it is important
to systematically verify the suitability of AOP [17] for designing
stable product lines, especially when compared to mainstream
variability mechanisms, such as object-oriented (OO) constructs
and conditional compilation. Even though there are a number of
emerging academic programming techniques for supporting
product-line development [21], the empirical evaluation of core
AOP mechanisms is still very limited in the literature.

This paper presents a case study that quantitatively and
qualitatively assesses the positive and negative impacts of AOP
on a number of changes applied to both the core architecture and
variable features of SPLs. Our investigation focused on several

evolution scenarios of two heterogeneous product lines (Section
3), called MobileMedia [29, 30] and BestLap [2], which were
both implemented in Java and AspectJ. Conditional compilation
was the variability mechanism used in the Java releases, which
were used in turn with the goal of supporting an analysis of AOP.
In other words, the goal of our comparative analysis was to
observe to what extent AOP mechanisms provide or not enhanced
product line stability in the presence of change tasks. The design
stability evaluation of the Java and AspectJ versions were based
on three conventional metrics suites for change impact [28]
(Section 4), modularity [25] (Section 5), and feature dependency
[15] (Section 6). We documented scenarios where AOP succeeds
or not. For example, AOP copes well with the separation of
features with no shared code. Furthermore, when adding an
optional or alternative feature, AspectJ adheres better than Java to
well-known design principles, such as the Open-Closed principle
[20]. However, AOP is particularly vulnerable to changes
targeting core features. For example, turning a mandatory feature
into alternatives leads to ripple effects across the SPL design.

2. STUDY SETTING
This section describes the configuration of our study. Section 2.1
briefly explains the two variability techniques evaluated in this
study. Section 2.2 describes the evaluation methodology.

2.1 Variability Programming Mechanisms
In order to enable the variation of software product lines (SPLs),
this work considers two variability implementation techniques:
AOP [17] and conditional compilation. We chose AspectJ [27] to
implement variability with AOP because it is the most
consolidated AOP language. Besides, our goal was to assess the
suitability of core AOP mechanisms for handling variability
rather than other emerging AOP mechanisms available in
programming languages, such as CaesarJ [21]. Conditional
compilation, on the other hand, is a well-known technique for
handling variation [2]. Basically, preprocessor directives indicate
pieces of code that should compile or not based on the value of
preprocessor variables. Such decision may be at the level of a
single line of code or to a whole file. For instance, Figure 1
describes a slice of code of the MobileMedia application where a
logical connector is used to determine when the enclosed code of
two features (smsFeature and captureMedia) must be compiled.

01 //#ifdef copyMedia
02 private void processMediaData(String mediaName,
 String albumName) {
03 MediaData mediaData = null;
04 //#if smsFeature || captureMedia
05 byte[] mediaByte = getCapturedMedia();
06 if (mediaByte == null)
07 //#endif
08 mediaData = getAlbumData().getMediaInfo(mediaName);
09 //#if smsFeature || captureMedia
10 if (mediaByte != null)
11 getAlbumData().
 addMediaData(mediaName, mediaByte, albumName);
12 else
13 //#endif
14 getAlbumData().addMediaData(mediaData, albumName);
15 }
16 //#endif

Figure 1. Variability with conditional compilation
Alternatively, AOP languages support the modular definition of
features which are generally spread throughout the system and
tangled with core features [1, 4, 16]. For instance, the pieces of

code enclosed by #if and #endif in Figure 1 belong to optional
features and AOP separates them using pointcuts, advices or
inter-type declarations. Figure 2 shows a possible implementation
of the variability points of Figure 1 using AspectJ mechanisms.
The tangled code common to the smsFeature and captureMedia
features is now modularised in a unique place (around advice).

01 public aspect SMSOrCaptureMedia {
02 pointcut processMediaData (...): execution(*
 *.processMediaData(...)) && this(...) && args(...);
03 void around (...): processMediaData(...) {
04 byte[] mediaByte = controller.getCapturedMedia();
05 if (mediaByte == null)
06 proceed(controller, mediaName, albumName);
07 else
08 controller.getAlbumData().
 addMediaData(mediaName, mediaByte, albumName);
09 }
10 }

Figure 2. Variability with AOP mechanisms

2.2 Study Phases and Assessment Procedures
The study was divided into three major phases: (1) the design and
realisation of SPL change scenarios, (2) the alignment of SPL
versions, and (3) the quantitative and qualitative assessments of
the SPL versions and successive releases. In the first phase, an
independent group of five post-graduate students was responsible
for implementing the successive evolution scenarios of two SPLs:
BestLap [2] and MobileMedia [29, 30] (Section 3). The original
releases of both product lines used in this study were available in
both AspectJ and Java (the Java versions use conditional
compilation as the variability mechanism). Then, each new
release was created by modifying the previous release of the
respective SPL. For example, AspectJ release 2 evolved from
AspectJ release 1. Best-of-breed design practices [5, 9] were
applied throughout the creation of all the SPL releases. In order to
assure them, there was also a validation of each scenario with
professionals (e.g. BestLap developers) and researchers with
long-term experience on the development of the target SPLs.
Besides, the scenarios were extracted based on the consultation
with such real designers in order to understand typical changes in
product-line designs.

Development of the SPL Releases. In the first phase, we created
eight releases of the MobileMedia (Section 3.1), available from
[10], and five of BestLap (Section 3.2), not available due to
copyright constraints. Both MobileMedia and BestLap have been
successfully used in other studies involving modular design of
SPLs [2, 29, 30], and so provided a solid foundation for our study.
Notice that we did not target the comparison of the two SPLs (i.e.
MobileMedia and BestLap). On the contrary, the objective of
using more than one sample was to allow us to yield broader
conclusions that are agnostic to specific SPLs.

SPL Alignment Rules. All SPL releases were verified according
to a number of alignment rules (phase 2) in order to assure that
coding styles and implemented functionality were exactly the
same. Moreover, the implementations followed the same design
decisions in that best practices [5, 9] were applied in all
implementations to ensure a high degree of modularity and
reusability. This alignment and validation activities were
performed by two independent researchers. A number of test
cases were exhaustively used for all the releases of the Java and
AspectJ versions to ease the alignment process. These alignment
procedures assure that the comparison between aspect-oriented

(AO) and non-AO versions is equitable and fair. Inevitably, some
minor refactoring in the two versions had to be performed when
misalignments were observed at the implementation artefacts or
even at the design level. When these misalignments were
discovered the developers for that particular version were notified
and instructed to correct the implementation accordingly.

SPL Stability Assessment. The goal of the third phase was to
compare the design stability of AO and non-AO designs. In order
to support a multi-dimensional data analysis, the assessment
phase was further decomposed in three main stages. The first
stage (Section 4) evaluates the two implementations from the
perspective of change propagation. The following stage (Section
5) is aimed at examining the overall maintenance effects in
fundamental modularity properties through the product-line
releases. The last stage (Section 6) focuses on assessing design
stability in terms of how the implementation of feature
‘boundaries’ and their dependencies have evolved through the
SPL releases. Traditional metrics were used in all the assessment
stages, and will be discussed in the respective sections. All
measurement results are available from [10].

3. TARGET PRODUCT LINES
For comprehensive investigation the initial decision entailed the
selection of the target product lines. The two chosen SPLs are
BestLap [2] and MobileMedia [29, 30]. They were selected due to
several reasons. First, we believe these SPLs are representatives
for the mobile devices domain, since they have (i) several
variability points related to heterogeneous mobile platforms and
(ii) many alternative and optional features. In fact, one of them is
a real application of a software company. Second, both
encompass different degrees of complexity and different levels of
scalability. Also, assessment of more than one application from
the same domain provides us with a fair comparison of design
stability. Besides, Java and AspectJ solutions of both SPLs were
available facilitating the analysis of the two investigated
variability mechanisms: conditional compilation and AOP.

Video

Media

Music

Copy
Media

SMS
Transfer

Media
Management

Mobile
Media

Create/
Delete

Label
Media

View/Play
Media

Favourites

Photo

O1 O2 O3

A1 A2 A3

Figure 3. Simplified MobileMedia feature model

3.1 MobileMedia
MobileMedia is a SPL for applications with about 3 KLOC that
manipulate photo, music, and video on mobile devices, such as
mobile phones. It was developed based on a previous SPL called
MobilePhoto [29], developed at University of British Columbia.
In fact, in order to implement MobileMedia, the developers
extended the core implementation of MobilePhoto including new
mandatory, optional and alternative features (Section 3.1.1).
Figure 3 presents a simplified view of the feature model [23] of
MobileMedia. The alternative features are just the types of media
supported: photo, music, and/or video. Examples of core features
are: create/delete media, label media, and view/play media. In
addition, some optional features are: transfer photo via SMS,
count and sort media, copy media and set favourites. The core

features of MobileMedia are applicable to all the mobile devices
that are J2ME enabled. The optional and alternative features are
configurable on selected devices depending on the provided API
support. MobileMedia was developed for a family of 4 brands of
devices [29, 30], namely Nokia, Motorola, Siemens, and RIM.

3.1.1 Change Scenarios
As mentioned in Section 2.2, in the first phase of our investigation
we designed and implemented a set of change scenarios. In the
MobileMedia product line, a total of seven change scenarios were
incorporated, which led to eight releases. Table 1 summarises
changes made in each release. The scenarios comprise different
types of changes involving mandatory, optional, and alternative
features, as well as non-functional concerns. Table 1 also presents
which types of change each release encompassed. The purpose of
these changes is to exercise the implementation of the feature
boundaries and, so, assess the design stability of the product line.

Table 1. Summary of scenarios in MobileMedia

Release Description Type of Change
R1 MobilePhoto core [29, 30]

R2
Exception handling included (in the AspectJ
version, exception handling was implemented
according to [13])

Inclusion of non-
functional concern

R3

New feature added to count the number of times a
photo has been viewed and sorting photos by
highest viewing frequency.
New feature added to edit the photo’s label

Inclusion of optional
and mandatory

features

R4 New feature added to allow users to specify and
view their favourite photos.

Inclusion of optional
feature

R5 New feature added to allow users to keep
multiple copies of photos

Inclusion of optional
feature

R6 New feature added to send photo to other users by
SMS

Inclusion of optional
feature

R7

New feature added to store, play, and organise
music. The management of photo (e.g. create,
delete and label) was turned into an alternative
feature. All extended functionalities (e.g. sorting,
favourites and SMS transfer) were also provided

Changing of one
mandatory feature

into two alternatives

R8 New feature added to manage videos Inclusion of
alternative feature

Controller

PhotoViewScreenSMSScreen PlayMediaScreenMediaListScreen

Command

PhotoView
Controller

VideoPlay
Controller

MusicPlay
Controller

CommandListener

AbstractController

nextHandler

PhotoAlbumDataVideoAlbumData MusicAlbumData

AlbumData

SMS
Controller

PhotoAccessorVideoAccessor MusicAccessor

MediaAccessor

<Aspect>
Video

<Aspect>
Music

<Aspect>
Photo

<Aspect>
SMS

<Aspect>
PhotoOrMusic

<Aspect>
PhotoMusicVideo

<Aspect>
PhotoMusic

<Aspect>
PhotoOrMusicOrVideo

O3

O3 A1

A1

A1A1

A2A1

A2A3

A3

A2

A3A2A1

A2A3 A2A3

A3A2A1

A2A1

O3

Media
Controller

Model

View

+R8

+R8+R8

+R8

+R8

+R7

+R7

+R7+R7

~R3 ~R4 ~R7~R8 +R7~R8

& &

|

A3A2 |

||

&

A1

+R6

~R7

~R2 ~R3 ~R5~R4 ~R6

+R6

+R3 ~R4 ~R5

~R5 ~R6

+R6 +R7

+R7

+R7

+R8

~R7 +R5 ~R7
Figure 4. AO MobileMedia Architecture: marked a sub-set of

modules affected by the scenarios

3.1.2 AO Architectural Design
Both Java and AspectJ designs of MobileMedia are mainly
determined by the use of the Model-View-Controller (MVC)
architectural pattern [5]. Figure 4 presents a representative partial
view of the AspectJ architectural design. Due to space constraints,
we do not present the Java architecture. The three grey boxes
encompass classes that realise each of the three roles of the MVC
pattern, namely model, view, and controller. The aspects do not
belong to a specific role since they crosscut classes in more than
one MVC role. Figure 4 also relates the design elements with the
features in the feature model (Figure 3). This is done by the
circles on the right top of the classes and aspects. For instance, the
O3 on the top of the SMS aspect (Figure 4) indicates that this
aspect contributes to the implementation of the feature marked
with the O3 in the feature model (Figure 3). The sequence of Rs
on the bottom of classes and aspects represent whether a class or
aspect was added (+R) or changed (~R) during the
implementation of a particular release. For instance, the
VideoPlayController class was added during the
implementation of the eighth release (+R8).

Taking the eighth release as example, it comprises three
alternative features, PHOTO, VIDEO, and MUSIC, and the code of
these features is realised by classes and aspects in the AspectJ
version (Figure 4). On the other hand, in the Java implementation
code related to each of these features is entirely realised by the
view, controller, and model classes. Optional features are
implemented in the same way. For instance, in the Java version,
the SMS optional feature is implemented by the SMSController
and SMSScreen. In the AspectJ solution, this feature is
implemented by the same classes plus the SMS aspect.

3.2 BestLap
The second chosen SPL is a commercial project, called BestLap,
developed by our industrial partner Meantime Mobile Creations1 .
BestLap is a racing car mobile game developed as a software
product line where players have to achieve the pole position on a
racing track. The score in the game is calculated on the basis of
lap time and collected bonuses. Top scores are saved in the Hall
of Fame and posted on the server, which shows ranking of
multiple users with high scores. This product line has
approximately 10 KLOC, can be deployed on 65 mobile devices,
and has a total of 16 instances. Each instance is compatible for
one family of devices that are grouped considering their
compatibility to support the same game code. Although BestLap
includes several mandatory, optional, and alternative features, this
investigation focuses on the mandatory features SOUND, SCREEN,
and GRAPHICS, which have further alternative sub features.

Change Scenarios. In the Bestlap product line, a total of four
change scenarios were incorporated, which led to five releases.
Table 2 summarises the changes that were made and their
respective types. The scenarios encompassed the inclusion of an
optional feature (ARENA) and the extension of alternative features.
Each change scenario generates an instance for a family of
devices. For example, the mandatory feature SCREEN was
extended in release 2 to be supported by Motorola V300 and L6
devices. The purpose of these changes is to assess the design
stability of BestLap through the SPL releases.

1 http://www.meantime.com.br/en/

Table 2. Summary of scenarios in BestLap
Release Description Type of Change

R1 Features to support Motorola V220 devices

R2 Extended screen size feature to support different
sizes for Motorola V300 and L6 devices

Extension of the
Screen Size feature

R3
Extended sound feature to support pre-allocating
sound policy before playing the game for Nokia
devices family

Extension of the
features Sound,

Graphics, and Screen

R4 Extended the Nokia shortcut keys for Siemens
and Sony Ericsson devices

Extension of the
features Keys, Sound,
Graphics, and Screen

R5 New feature added to allow multiple users to
post their respective lap time on the server

Inclusion of the Arena
optional feature

4. CHANGE IMPACT ANALYSIS
Section 2.2 described how the assessment procedures were
organised in three stages. This section presents the first stage
where we quantitatively analyse to what extent each maintenance
scenario entails change propagations in the target AO and non-
AO product lines. This phase relies on a suite of typical change
impact measures [28], such as number of components (classes and
aspects) added or changed, number of added or modified lines of
code (LOC), and so forth. The purpose of using these metrics is to
quantitatively assess the propagation effects, when introducing or
changing a specific feature, in terms of different granularities:
components, operations, and LOC. Besides, the suite includes
metrics to assess the changes in pointcut and #ifdef declarations
which are the two main variability constructs of AOP and
conditional compilation, respectively. The lower the change
impact measures the more stable and resilient the design is to a
certain change.

Table 3: Measures of change propagation in MobileMedia
Mandatory Optional Alternative
R.2 R.3 R.4 R.5 R.6 R.7 R.8

OO 9 1 0 5 7 17 6 Added AO 12 2 3 6 8 21 16
OO 0 0 0 0 0 8 1 Removed AO 1 0 0 0 0 8 0
OO 5 8 5 8 6 12 22 C

om
po

ne
nt

s

Changed AO 5 10 2 8 5 16 9
OO 32 21 3 36 37 110 45 Added AO 49 28 10 37 47 118 71
OO 0 2 0 19 0 71 13 Removed AO 2 2 0 20 0 63 13
OO 28 12 7 10 7 22 23 O

pe
ra

tio
ns

Changed AO 25 16 1 20 4 69 10
OO 273 162 51 521 443 1296 520 Added AO 374 220 97 436 469 1188 729
OO 10 8 2 205 9 897 120 Removed AO 57 16 0 278 16 663 111
OO 29 29 7 18 2 67 24 Li

ne
s o

f C
od

e

Changed AO 29 40 1 70 8 222 12
Added OO 0 11 9 15 10 75 53
Removed OO 0 0 0 0 0 8 6

IF
D

EF

Changed OO 0 0 0 0 3 20 11
Added AO 43 6 7 2 7 19 26
Removed AO 0 0 0 0 0 0 5 PC

s

Changed AO 0 8 0 16 2 50 2

Table 3 shows the change propagation in the MobileMedia design
as it evolves through the change scenarios (Table 1). According to
the similarities among the results observed in the measurement,
we classified the scenarios into 3 groups: introduction of
mandatory features (Section 4.1), optional features (Section 4.2),

and alternative features (Section 4.3). Section 4.4 presents a
discussion of the stability of the variability mechanisms.

4.1 Including Mandatory Features
This section reports and discusses the results of the change impact
in releases 2 and 3 together because they share the common
characteristic of adding mandatory features: EXCEPTIONHANDLING
and LABELMEDIA, respectively. AO solution usually does not
cope with the introduction of mandatory features in this study
since it is not targeted at modularising them. For instance, all
components added in the Java release 2 (new exceptions classes)
are also included in the AO one. The main difference is that, the
AO version added additional aspects to handle the exceptions
included in this release, which also implies more operations
(advices handling the exceptions [6, 13]) and LOC. The same
phenomenon happens in release 3, where the class PhotoView
Controller was included in both AO and non-AO versions.
Besides, AspectJ solution also added to this release a new aspect
related to the incorporation of the optional feature SORTING. It is
important to notice that a perfective refactoring in release 3 which
changes a reference from String to Image in the ImageData
class implies more changes in operations and LOC of the AO
version due to the number of pointcuts relying on that reference.

4.2 Including Optional Features
Regarding the introduction of optional features (releases 4 to 6),
the AspectJ solution introduced more components because new
aspects have to be included in addition to the classes realising the
features. Note that in the AO implementation of the SPL, aspects
usually work as glue between the core and optional features [1, 4].
Operations are also included more in the AO solution due to the
newly created advices. Despite the drawback of adding more
elements, the AO solution often changes less components and
operations. As a result, considering the Open-Closed principle
[20], which states that ‘software should be open for extension, but
closed for modification’, AO approach conforms more closely to
this principle in scenarios which include optional features. For
instance, the PersistenceManager component demanded
changes in the Java release 4 in order to make favourite images
persistent. On the other hand, the AO counterpart required no
change in this component because the feature was implemented
by new classes and the Favourites aspect.

A direct result of more operations and components included in the
AspectJ version is the increase in LOC. However, it is interesting
to notice that sometimes AspectJ overcame this problem by
avoiding some replicated code. For instance, despite the fact that
the AO version has more added components in release 5 (6
components in contrast to 5 in the Java version), the number of
added LOC in the non-AO version is higher (19% more).

4.3 Including Alternative Features
The last two releases of MobileMedia introduced the alternative
features MUSIC and VIDEO, respectively. However, release 7
turned a mandatory feature into alternative leading to a big impact
in the change propagation metrics. Such impact is a result of
changes applied to the core assets of the SPL and, therefore,
release 7 affected all optional features which rely on this core.
When changing a mandatory feature into two alternatives (release
7), AspectJ adds and changes more components/operations/LOC

because all aspects rely on the points of intersection (join points)
provided by the core. For instance, consider that a method in the
core evolves to become optional in some concrete instances of the
SPLs. In addition to changes in the class which contains this
method, aspects that use this method as point of advising have to
be changed as well.

Unlike release 7, release 8 added a new alternative feature to an
existing set of alternatives and the AO version required fewer
changes of components/operations/LOC. Note that in this
situation, changes are not targeted at a mandatory feature and,
therefore, they do not change the points which aspects rely on.
The measures of scenario 8 are similar to the introduction of an
optional feature. That means, more components and operations
added, but less of them are changed. Again, AspectJ adheres
better to the Open-Closed principle [20].

4.4 Stability of the Variability Mechanisms
Another point to consider is the fragility of pointcut expressions
and conditional compilation declarations. In terms of added
constructs, in all scenarios (except Scenario 1) it is necessary to
add more #ifdefs in the Java version than pointcuts into aspects
(Table 3). This situation is due to the pointcut concept which
allows a selection of a set of join points in the code while the
conditional compilation mechanism spread over each place where
intersections between core and other features exist. Therefore, a
new #ifdef construct has to be added to capture each specific point
of interception between the core and an optional/alternative
feature. The only exception is release 2 because exception
handling does not require conditional compilation in the non-AO
version since it is mandatory.
Depending on the evolution scenario, AspectJ pointcuts can be
more fragile than conditional compilation. In release 7, for
instance, it was necessary to refactor the name of a mandatory
feature (PHOTO) in order to generalise it into two alternative
features (PHOTO or MUSIC). In this case, every occurrence of this
name had to be changed. Since certain aspects have several
pointcuts relying on the syntactic match (e.g. names of methods
and classes), this implies in many pointcuts being changed. On the
other hand, #ifdefs do not need to be changed very often because
they refer only to the feature name. In fact, conditional
compilation tags had to be changed in releases 6 to 8 due to the
sharing of code among more than one feature (see Figure 1).

5. MODULARITY ANALYSIS
This section presents the results for the second stage where we
analyse the stability of the BestLap and MobileMedia product
lines throughout the implemented changes. We used a metrics
suite that quantified four fundamental modularity attributes,
namely separation of concerns (Section 5.1), coupling, cohesion,
and conciseness (Sections 5.2). Such metrics were chosen because
they have already been used in several experimental studies and
proved to be effective maintainability indicators (e.g. [7, 13-15]).

The metrics for coupling, cohesion, and size were defined based
on classic OO metrics [8]; the original metrics definitions were
extended to be applied in a paradigm-independent way,
supporting the generation of comparable results. In addition, this
suite introduces four new metrics for quantifying separation of
concerns (SoC) [11, 25]. They measure the degree to which a
single concern (feature, in the case of this study) in the system

maps to: (i) components (i.e. classes and aspects) – based on the
metric Concern Diffusion over Components (CDC), (ii)
operations (i.e. methods and advices) – based on the metric
Concern Diffusion over Operations (CDO), and (iii) lines of code
– based on the metric Concern Diffusion over Lines of Code
(CDLOC). The majority of these metrics can be collected
automatically by applying an existing measurement tool [12].

The SoC metrics require the manual ‘shadowing’ of the code, i.e.
identifying which segment of code contributes to which feature in
the SPLs. Although the mapping of features to the source code is
not completely automated, it is facilitated with tool support [24].
This involved six post-graduate students (four of them not
involved in the implementation phase of the study) grouped in
three pairs. In circumstances when it was not clear which concern
the segment contributes to, cross-discussions among all groups
involved in the shadowing took place to reach a common
agreement. For all the employed metrics, a lower value implies a
better result. Detailed discussions about the metrics appear
elsewhere [11, 14, 25].

5.1 Separation of Features
This section presents the measurement results for the SoC metrics.
We analysed 15 features (12 from MobileMedia and 3 from
BestLap) which include 5 optional, 6 alternative and 4 mandatory
features. These were selected because optional and alternative
features are the locus of variation in the SPLs and, therefore, they
have to be well modularised. On the other hand, mandatory
features need to be investigated in order to assess the impact of
changes on the core. From the analysis of SoC measures, three
groups of features naturally emerged with respect to which type
of modularisation paradigm presents superior stability.

Group 1: AspectJ succeeds in features with no shared code.
This group encompasses two optional features (SORTING and
FAVOURITES), one alternative feature (GRAPHICS), and one
mandatory feature (EXCEPTIONHANDLING). A common
characteristic of all these features is that they do not share any
piece of code with other features. Figure 5 shows examples of
SoC metrics for two representative features of this group, namely
SORTING and EXCEPTIONHANDLING. The AO solution of SORTING
presents lower values and superior stability in terms of tangling
(CDLOC) and scattering over components (CDC). The
effectiveness of AO mechanisms to localise this kind of features
is due to the ability to transfer the code in charge of realising the
optional feature from classes to a set of dedicated classes and one
or more glue aspects. Conditional compilation lacks this ability
because it has a somewhat intrusive effect on the code, due to the

need to add the #ifdef /#endif clauses locally at the places where
features intersect.

Although AO solutions are more stable, in some cases they
require an increase of operations (CDO) to realise features of this
category. For instance, the number of operations of SORTING
(Figure 5) rises through the evolution of MobileMedia because (i)
advices are created in order to mimic the behaviour of the feature
when the join point is reached and (ii) new operations are created
in the core classes to expose join points that aspects can capture.
The AO solution of EXCEPTIONHANDLING also increases the CDO
value because, unlike try-catch blocks in Java, each handler
advice is counted as a new operation. Feature tangling tends to be
very low and stable in this category (see CDLOC of SORTING in
Figure 5) because every feature is realised by its individual set of
aspects and classes. However, EXCEPTIONHANDLING does not
follow this trend. Even though the AO implementation scales
better than the OO one, its value for CDLOC rises at each new
release. This unstable behaviour of CDLOC is a consequence of a
design decision we have made to not extract every try-catch block
to aspects. This decision stemmed from our previous knowledge
that there are situations where aspectisation contributes negatively
to the quality of exception handling code [6, 13]. Since we have
adhered to the policy of using only the best design practices, we
have aspectised only scenarios in which aspects are beneficial.

Group 2: Increased scattering of code-sharing features. Some
features have not presented explicit superiority in either of the
paradigms. These include three optional features (COPYMEDIA,
SMS and CAPTUREMEDIA) and five alternatives features (SOUND,
SCREENSIZE, PHOTO, MUSIC and VIDEO). Figure 6 (left side) shows
the results of the SOUND feature as a representative of this group.
As observed in the charts of CDC and CDLOC, both paradigms
experience inverted result in terms of these metrics. This
inversion occurs for two main reasons. First, all of those features
share one or more slice of code with other features. For instance,
Figure 1 (Section 2.1) depicts a scenario where SMS shares two
distinct pieces of code with CAPTUREMEDIA. In general, the
aspectisation process of this kind of sharing consists of creating a
separate aspect to handle this common code (Figure 2). As a
consequence, the number of components implementing those
features (CDC) is higher in the AO version because each set of
common code must be modularised in a separated aspect (unlike
#if blocks which use just an OR/AND conditional operator).
Second, as the features were modularised into aspects, the
CDLOC metric is less affected on AO solutions since changes are
localised in the initial modules which seem to cope well with the
newly introduced scenarios.

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

0

2

4

6

8

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

3

6

9

12

15

1 2 3 4 5 6 7 8

Releases
C

on
ce

rn
 D

ifu
si

on
 o

ve
r O

pe
ra

tio
ns

Sorting

0

60

120

180

240

300

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

ExceptionHandling

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

0

2

4

6

8

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

3

6

9

12

15

1 2 3 4 5 6 7 8

Releases
C

on
ce

rn
 D

ifu
si

on
 o

ve
r O

pe
ra

tio
ns

Sorting

0

60

120

180

240

300

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

ExceptionHandling

0

2

4

6

8

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

3

6

9

12

15

1 2 3 4 5 6 7 8

Releases
C

on
ce

rn
 D

ifu
si

on
 o

ve
r O

pe
ra

tio
ns

Sorting

0

2

4

6

8

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

3

6

9

12

15

1 2 3 4 5 6 7 8

Releases
C

on
ce

rn
 D

ifu
si

on
 o

ve
r O

pe
ra

tio
ns

Sorting

0

60

120

180

240

300

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

ExceptionHandling

0

60

120

180

240

300

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

ExceptionHandling

Figure 5. SoC metrics for SORTING and EXCEPTIONHANDLING in MobileMedia

Group 3: AspectJ is harmful to modularity of mandatory
features. Mandatory features and some widely-scoped concerns
tended to present slightly superior design stability in the Java
implementation of the product lines. These include, for instance,
the LABELMEDIA feature as well as the concerns PERSISTENCE and
CONTROLLER of MobileMedia. Figure 6 (right side) shows the
metrics results for LABELMEDIA and PERSISTENCE as
representatives of this group. We observe (Figure 6) that the
modularisation of LABELMEDIA is more stable in the Java version,
since this feature is spread over fewer components (CDC) in this
solution. Besides, the difference increases throughout the releases
due to the rising of CDC in the AspectJ solution. The CDLOC
results for the PERSISTENCE concern show the same trend.

The features and concerns in this group constitute the core of the
SPLs, and, therefore, were not aspectised – our strategy was to
use aspects only for optional and alternative features. In addition,
most of the optional and alternative features depend on the core
features and concerns. For instance, PHOTO, MUSIC and VIDEO
alternative features depend on LABELMEDIA and PERSISTENCE,
once every photo, song or video must be labelled and persisted.
Therefore, as new optional and alternative features are included
over the different releases, the number of components that
contains mandatory and non-functional concerns increases.
Hence, the reason for this difference on modularity stability is that
the number of components included over the releases is higher in
the AspectJ version, as discussed in Section 4. As a consequence,
the number of components where, for instance, LABELMEDIA and
PERSISTENCE are, increases more in the AspectJ version than in
the Java one. As a conclusion, the results of this group indicate
that using aspects to modularise only optional and alternative
features in the investigated product lines negatively impacted on
the modularity of mandatory features.

5.2 Coupling, Cohesion and Size
The absolute values collected to the coupling, cohesion, and size
metrics in our case studies have favoured the Java version for
most of the evolution scenarios. Figure 7 illustrates the absolute
values results for Coupling between Components (CBC) and Lack
of Cohesion in Operations (LCOO) of MobileMedia, and for
Vocabulary Size (VS) and Lines of Code (LOC) of BestLap. The
increase of all metrics in the AspectJ solution is mainly due to the
creation of the new aspects (VS in Figure 7). In fact, in some
releases, it was observed that the difference for the collected
metrics between the OO and AO versions was caused not only by
the creation of new aspects but also because many of them are
heterogeneous. A heterogeneous aspect affects multiple classes
and respective join points in different ways by introducing
different behaviour in each of them.

The use of aspects improved the modularisation of optional and
alternative crosscutting features (Section 5.1). On the other hand,
they caused an increase on coupling, cohesion, and size metrics.
Some scenarios presented a slight difference between the Java and
AspectJ solutions. For instance, Figure 7 shows a minor
dissimilarity of LOC in favour of Java for the BestLap case study
through all evolution scenarios. In addition, release 1 to release 6
of MobileMedia also presents a slight difference in the
measurements of CBC and LCOO. For both product lines, though,
we also observed a significant increase on the measurements in
some specific releases. Figure 7 shows, for example, a significant
increase in the CBC and LCOO metrics of MobileMedia
considering scenarios 7 and 8. It happened mainly due to the
AspectJ implementations difficulty of addressing different SPL
configurations (specific combination of features). While the use
of conditional compilation in the Java version allowed to codify

0

4

8

12

16

20

1 2 3 4 5

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

15

30

45

60

75

1 2 3 4 5

Releases
C

on
ce

rn
 D

ifu
si

on
 O

ve
r L

O
C

Sound (BestLap)

0

8

16

24

32

40

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r C
om

po
ne

nt
s

0

40

80

120

160

200

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

LabelMedia (MobileMedia) Persistence (MobileMedia)

0

4

8

12

16

20

1 2 3 4 5

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

15

30

45

60

75

1 2 3 4 5

Releases
C

on
ce

rn
 D

ifu
si

on
 O

ve
r L

O
C

Sound (BestLap)

0

4

8

12

16

20

1 2 3 4 5

Releases

C
on

ce
rn

 D
ifu

si
on

 o
ve

r C
om

po
ne

nt
s

Java
AspectJ

0

15

30

45

60

75

1 2 3 4 5

Releases
C

on
ce

rn
 D

ifu
si

on
 O

ve
r L

O
C

Sound (BestLap)

0

8

16

24

32

40

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r C
om

po
ne

nt
s

0

40

80

120

160

200

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

LabelMedia (MobileMedia) Persistence (MobileMedia)

0

8

16

24

32

40

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r C
om

po
ne

nt
s

0

40

80

120

160

200

1 2 3 4 5 6 7 8

Releases

C
on

ce
rn

 D
ifu

si
on

 O
ve

r L
O

C

LabelMedia (MobileMedia) Persistence (MobileMedia)

Figure 6. SoC metrics for SOUND (BestLap) and LABELMEDIA and PERSISTENCE (MobileMedia)

0

150

300

450

600

750

1 2 3 4 5 6 7 8

Releases

La
ck

 o
f C

oh
es

io
n

O
ve

r O
pe

ra
tio

ns

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Releases

C
ou

pl
in

g
B

et
w

ee
n

C
om

po
ne

nt
s

Java
AspectJ

MobileMedia

6000

7000

8000

9000

10000

11000

1 2 3 4 5

Releases

Li
ne

s
of

 C
od

e

0

20

40

60

80

100

1 2 3 4 5

Releases

Vo
ca

bu
la

ry
 S

iz
e

BestLap

0

150

300

450

600

750

1 2 3 4 5 6 7 8

Releases

La
ck

 o
f C

oh
es

io
n

O
ve

r O
pe

ra
tio

ns

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Releases

C
ou

pl
in

g
B

et
w

ee
n

C
om

po
ne

nt
s

Java
AspectJ

MobileMedia

0

150

300

450

600

750

1 2 3 4 5 6 7 8

Releases

La
ck

 o
f C

oh
es

io
n

O
ve

r O
pe

ra
tio

ns

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Releases

C
ou

pl
in

g
B

et
w

ee
n

C
om

po
ne

nt
s

Java
AspectJ

MobileMedia

6000

7000

8000

9000

10000

11000

1 2 3 4 5

Releases

Li
ne

s
of

 C
od

e

0

20

40

60

80

100

1 2 3 4 5

Releases

Vo
ca

bu
la

ry
 S

iz
e

BestLap

6000

7000

8000

9000

10000

11000

1 2 3 4 5

Releases

Li
ne

s
of

 C
od

e

0

20

40

60

80

100

1 2 3 4 5

Releases

Vo
ca

bu
la

ry
 S

iz
e

BestLap

Figure 7. Coupling and cohesion of MobileMedia; and size of BestLap

all the SPL configurations using the AND and OR operators, the
AO solution required the coding of different aspects representing
different combinations of features, such as, PhotoOrMusic and
Photo(And)Music aspects (Figure 4). This situation could be
alleviated with more flexible constructs to define the order for
applying aspects to the same join points in the AspectJ language.

6. FEATURE DEPENDENCY ANALYSIS
The analysis of the data gathered based on the change impact and
modularity metrics (Sections 4 and 5) shows evidence that most
of the features involved in MobileMedia and BestLap are
scattered and tangled with each other over the product-line classes
and aspects. For example, the aspect PhotoMusicVideo
incorporates code related to PHOTO, MUSIC, and VIDEO (Figure 4).
This section discusses how the features dependencies changed
over the releases in the AspectJ and Java implementations. The
goal is to observe how changes relative to a specific feature
‘traversed the boundaries’ of other feature implementations and/or
generated new undesirable inter-feature dependencies.

6.1 Categories of Dependency
In order to support such dependency analysis, we have observed
different categories of feature dependency. In the context of the
studied SPLs, we considered two different ways in which the
features interact with each other: interlacing and overlapping. The
classification of feature dependencies is based on how the feature
realisations share elements in the implementation artefacts. A
similar classification has already been defined and exploited in
previous studies [7, 13].

Interlacing. This dependency occurs when the implementation of
two features, F1 and F2, have one or more components (or
operations) in common [7]. We classify a dependency as
component-level interlacing if F1 and F2 share one or more
components (class or aspect). Similarly, we classify as operation-
level interlacing if F1 and F2 share one or more operations
(methods or advices) in a shared component. Both cases produce
feature tangling, but at different levels of granularity.

Overlapping. This kind of dependency occurs when the
implementations of features F1 and F2 share one or more
statements, attributes, entire methods, or entire components [7].
This dependency style is different from interlacing because here
the shared elements entirely contribute to both features rather than
being disjoint. Depending on the kind of elements participating in
the dependency, it can be classified as component overlapping,
operation overlapping, or lines of code overlapping.

6.2 Stability of Pair-wise Dependencies
This section focuses on an analysis of stability of each pair of
features through the releases. We verify for each feature the
number of components shared with other features (component-
level interlacing). This kind of analysis supports assessment of
feature modularisation and stability because it shows whether the
inter-feature coupling drops with the software evolution or not.
According to similar results obtained from the dependency
analysis, the investigated pairs of interacting features can be
classified into two groups: (i) dependency between two
mandatory features; and (ii) dependency where at least one of the
participant features is optional or alternative.

As a representative of the first group, Figure 8 depicts the
measures for the dependency between the CONTROLLER and
LABELMEDIA features of MobileMedia. We can grasp from this
figure that the number of components with both features increases
throughout the releases. However, the AspectJ version presents
inferior stability, since the amount of dependency increases faster
in this version. This means that the number of points where
changes to a mandatory feature can potentially impact other
mandatory features tend to be higher in the AspectJ version. This
occurs because the analysed mandatory features were not
aspectised. As a result, they are spread over the components that
implement optional and alternative features, whose quantity is
higher in the AspectJ version.

The results about the second group show that pair-wise
dependencies involving at least one optional or alternative feature
are stable in both AspectJ and Java versions. Figure 8 shows the
results for the dependency between two alternative features of
BestLap: GRAPHICS and SCREEN. We can see that the number of
shared components presents minor variation over the releases.
However, the amount of shared components is lower in the
AspectJ version. This occurs because GRAPHICS and SCREEN were
aspectised in the AspectJ version and, as a result, they are
scattered over less components than in the Java version. In the
AspectJ version, the two components which mixed these features
(Figure 8) modularise shared code of both features (overlapping)
that could not be placed in distinct aspects.

In addition to the component interlacing, we also analyse two
other categories of dependency: operation interlacing and LOC
overlapping. Figure 8 depicts the results of operation interlacing
and LOC overlapping for one pair of features: SORTING vs.
LABELMEDIA. This pair is also a representative of optional with
mandatory dependency. As discussed before, dependencies of this
category are more stable in the AO version, as well as it shares

0

2

4

6

8

10

3 4 5 6 7 8

Releases

O
pe

ra
tio

n
In

te
rla

ci
ng

0

4

8

12

16

3 4 5 6 7 8

Releases

Li
ne

s
of

 C
od

e
O

ve
rla

pp
in

g

Sorting vs. LabelMedia (MobileMedia)

0

2

4

6

8

1 2 3 4 5

Releases

C
om

po
ne

nt
s

In
te

rla
ce

0

4

8

12

16

2 3 4 5 6 7 8

Releases

C
om

po
ne

nt
s

In
te

rla
ce

Java
AspectJ

Controller vs. LabelMedia (MobileMedia) Graphics vs. Screen (BestLap)

0

2

4

6

8

10

3 4 5 6 7 8

Releases

O
pe

ra
tio

n
In

te
rla

ci
ng

0

4

8

12

16

3 4 5 6 7 8

Releases

Li
ne

s
of

 C
od

e
O

ve
rla

pp
in

g

Sorting vs. LabelMedia (MobileMedia)

0

2

4

6

8

10

3 4 5 6 7 8

Releases

O
pe

ra
tio

n
In

te
rla

ci
ng

0

4

8

12

16

3 4 5 6 7 8

Releases

Li
ne

s
of

 C
od

e
O

ve
rla

pp
in

g

Sorting vs. LabelMedia (MobileMedia)

0

2

4

6

8

1 2 3 4 5

Releases

C
om

po
ne

nt
s

In
te

rla
ce

0

4

8

12

16

2 3 4 5 6 7 8

Releases

C
om

po
ne

nt
s

In
te

rla
ce

Java
AspectJ

Controller vs. LabelMedia (MobileMedia) Graphics vs. Screen (BestLap)

0

2

4

6

8

1 2 3 4 5

Releases

C
om

po
ne

nt
s

In
te

rla
ce

0

4

8

12

16

2 3 4 5 6 7 8

Releases

C
om

po
ne

nt
s

In
te

rla
ce

Java
AspectJ

Controller vs. LabelMedia (MobileMedia) Graphics vs. Screen (BestLap)

Figure 8. Examples of pair-wise dependencies between mandatory, optional, and alternative features

fewer components and operations. However, although the AO
version concentrates the dependency in a few places (lower value
of operation interlacing in Figure 8), this dependency is stronger
than in the Java solution as highlighted by the higher value of
LOC overlapping. In other words, feature boundaries are wider
(more operation and component interlacing) in the Java
implementation and deeper (more overlapping) in the AO solution
of dependencies involving optional or alternative features.

6.3 Scalability in Complex Dependencies
The previous subsection discussed how the aspectisation of pair-
wise dependencies impacts different modularity attributes. This
section discusses how conditional compilation and AOP scaled in
dependencies involving a greater number of features. Figure 9
describes some representative features organised in terms of
releases and categories of dependency (Section 6.1). Each feature
has different number of bars since they were introduced in
different releases. The left-hand side of Figure 9 illustrates the
inability of conditional compilation mechanisms to scale when
complex dependencies among features occur. These charts
support the analysis of impact on a set of features by introducing
other new features. For instance, the introduction of two
alternative features, MUSIC and VIDEO, in releases 7 and 8
increased significantly the code overlapping among these features
and also optional features, such as COPYMEDIA and SMS. This
behaviour in some way was expected, since alternative features
tend to reuse parts of existing code to implement their function-
ality. However, surprisingly the introduction of one optional
feature also affected other optional features. This occurred, for
instance, in the sixth release when the introduction of SMS
increased code overlapping of this feature with COPYMEDIA. This
higher overlapping represents in practice the existence of more
explicit dependency between such optional features.

We observed that the AO implementations usually scale well for
all kinds of interlacing dependencies. AspectJ employs inter-type
declarations to address component interlacing and pointcut-
advices to deal with operation interlacing. The right-hand side of
Figure 9 shows that no kind of interlacing is observed in all
features analysed. However, the presence of overlapping can
hinder a smooth dependency process and, sometimes, negatively
affect the features being composed. This occurs because the

aspectisation of some specific scenarios with strong coupling
between the features can violate modularity (Section 5.2). For
example, the code described in Figure 2 was totally dedicated to
the COPYMEDIA feature by the fifth release, but this code is
moved to a new component (aspect) in release 7 because SMS
and CAPTUREMEDIA depend on it. Again, AspectJ presents the
same recurrent problem described above in which the introduction
of one optional feature affects another optional feature. In
addition, Figure 9 is useful to support the findings of Section 5
which claimed that AspectJ succeeds in features with no shared
code, i.e., no overlapping dependency.

7. RELATED WORK AND STUDY
CONSTRAINTS
Recent research work has explored the use of AOP in the
development or refactoring of SPLs [1, 3, 16]. Most of these
investigations, however, only concentrate on the qualitative
analysis of the features aspectisation process. For instance,
Kästner et al. [16] presented a case study on refactoring the
Berkeley DB system into a SPL. The authors reported several
limitations on the modularisation of features when using AspectJ,
such as the increase of coupling between aspects and classes due
to the strong dependency of pointcuts on implementation details
of the base code. In our work, we also found out some of the
limitations reported by Kästner et al. [16]. In addition, we (i)
categorised evolution scenarios in which AspectJ succeeds or not
(Sections 4 and 5) and (ii) investigated the stability and scalability
of this language to address feature dependencies (Section 6).

There are also investigations on the development of SPLs
focusing on the decomposition of architectures into features [3, 4,
22]. Mezini and Ostermann [22] identified that feature-oriented
approaches (FOAs) are only capable of modularising hierarchical
features. They propose CaesarJ [21] that combines ideas from
both AOP and FOAs to provide support to manage variability in
SPLs. More recently, Apel and Batory [4] have proposed the
Aspectual Mixin Layers [3] approach to allow the integration
between aspects and refinements. These authors have also used
size metrics to quantify the number of components and lines of
code in a SPL implementation. Their study, however, did not
consider a significant suite of software metrics and did not
address SPL evolution and stability. Greenwood et al. [15] used

Sorting

0

10

20

30

40

50

60

3 4 5 6 7 8

Releases

Favourites

0

5

10

15

20

25

30

35

4 5 6 7 8

Releases

Copy Media

0

5

10

15

20

25

30

35

5 6 7 8

Releases

SMS

0

5

10

15

20

25

30

35

40

6 7 8

Releases

Photo

0

10

20

30

40

50

60

70

80

7 8

Releases

Music

0

10

20

30

40

50

60

70

80

90

7 8

Releases

Sorting

0

1

2

3

3 4 5 6 7 8

Releases

Favourites

0

1

2

3

4 5 6 7 8

Releases

Copy Media

0

1

2

3

4

5 6 7 8

Releases

SMS

0

1

2

3

4

6 7 8

Releases

Photo

0

1

2

3

4

5

6

7

7 8

Releases

Music

0

1

2

3

4

5

6

7

8

9

10

7 8

Releases

Conditional Compilation AOPOperation Overlapping
Component Overlapping

Operation Interlace
Component Interlace

Sorting

0

10

20

30

40

50

60

3 4 5 6 7 8

Releases

Favourites

0

5

10

15

20

25

30

35

4 5 6 7 8

Releases

Copy Media

0

5

10

15

20

25

30

35

5 6 7 8

Releases

SMS

0

5

10

15

20

25

30

35

40

6 7 8

Releases

Photo

0

10

20

30

40

50

60

70

80

7 8

Releases

Music

0

10

20

30

40

50

60

70

80

90

7 8

Releases

Sorting

0

1

2

3

3 4 5 6 7 8

Releases

Favourites

0

1

2

3

4 5 6 7 8

Releases

Copy Media

0

1

2

3

4

5 6 7 8

Releases

SMS

0

1

2

3

4

6 7 8

Releases

Photo

0

1

2

3

4

5

6

7

7 8

Releases

Music

0

1

2

3

4

5

6

7

8

9

10

7 8

Releases

Sorting

0

1

2

3

3 4 5 6 7 8

Releases

Favourites

0

1

2

3

4 5 6 7 8

Releases

Copy Media

0

1

2

3

4

5 6 7 8

Releases

SMS

0

1

2

3

4

6 7 8

Releases

Photo

0

1

2

3

4

5

6

7

7 8

Releases

Music

0

1

2

3

4

5

6

7

8

9

10

7 8

Releases

Conditional Compilation AOPOperation Overlapping
Component Overlapping

Operation Interlace
Component Interlace

Operation Overlapping
Component Overlapping

Operation Interlace
Component Interlace

Figure 9. Scalability of conditional compilation and AOP in complex dependencies

similar suites of metrics to ours to assess the design stability of an
evolving application. However, they did not target at assessing the
impact of changes in the core and variable features of SPLs.

Regarding our study constraints, the applicability and usefulness
of some specific metrics used in this study, such as the cohesion
one, has often been questioned. We accept the criticism of such
metrics. However, it is important to consider the results gathered
from all metrics rather than just one metric in particular. In fact,
the multi-dimensional analysis allows us to grasp which
measurement outliers are significant and which are not. The use
of AspectJ could also be pointed out as a constraint in our
experimental evaluation, since it is not the only existing AOP
language. However, we have chosen AspectJ because it is a stable
and widely-used AOP language. Besides, most of the previous
studies about AOP and product lines used AspectJ as well.
Therefore, adopting this language allowed us to compare our
results with previous case studies.

8. CONCLUDING REMARKS
The transfer of aspect-oriented technologies to the development of
SPLs largely dependents on our ability to empirically understand
its positive and negative effects through design changes. Designs
of SPLs are often the target of unanticipated changes and, as a
result, incremental development has been largely adopted in
realistic SPLs development [1, 18]. This study evolved two real-
life SPLs in order to assess the capabilities of AOP mechanisms to
provide SPL modularity and stability in the presence of realistic
change tasks. Such evaluation included three complementary
analyses: implementation modularity, change propagation and
feature dependency.

From this analysis we discovered a number of interesting
outcomes. Firstly, the AO implementations of the studied SPLs
tend to have more stable design particularly when a change
targets optional and alternative features (Section 4.2 and 5.1).
This indicates that aspectual decompositions are superior in those
situations, especially when considering the Open-Closed principle
[20]. However, AO mechanisms do not cope with the introduction
of widely-scoped mandatory features or when changing a
mandatory feature into alternatives (Section 4.1 and 5.1).
Furthermore, such mechanisms usually scale well for
dependencies that do not involve shared code, although AspectJ
faces difficulties to address different SPL configurations.

9. ACKNOWLEDGEMENTS
This work is supported in part by the European Commission grant
IST-33710: Aspect-Oriented, Model-Driven Product Line
Engineering (AMPLE), grant IST-2-004349: European Network
of Excellence on Aspect-Oriented Software Development
(AOSD-Europe). We express our thanks to Trevor Young, Vander
Alves, and Meantime for providing us with the product lines.
Eduardo, Claudio, and Fabiano are supported by CAPES - Brazil.

10. REFERENCES
[1] Alves, V. et al. Extracting and Evolving code in Product Lines with

Aspect-Oriented Programming. Trans. on AOSD, pp. 118-144, 2007.
[2] Alves, V. Implementing Software Product Line Adoption Strategies,

Ph.D. thesis. Federal University of Pernambuco, March 2007.
[3] Apel, S. et al. Aspectual Mixin Layers: Aspects and Features in

Concert. Proceedings of ICSE'06, Shanghai, China, 2006.

[4] Apel, S. and Batory, D. When to Use Features and Aspects? A Case
Study. Proceedings of GPCE, Portland, Oregon, 2006.

[5] Buschmann, F. et al. Pattern-Oriented Software Architecture: a
System of Patterns. John Wiley & Sons, Inc. 1996.

[6] Cacho, N. et al. EJFlow: Taming Exceptional Control Flow in
Aspect-Oriented Programming. Proc. of AOSD.08, Belgium, 2008.

[7] Cacho, N. et al. Composing Design Patterns: A Scalability Study of
Aspect-Oriented Programming. Proc. of AOSD, Germany, 2006.

[8] Chidamber, S. and Kemerer, C. A Metrics Suite for Object Oriented
Design. IEEE Trans. on Soft. Eng. (TSE), pp. 476-493, 1994.

[9] Clements, P. and Northrop, L. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[10] Evolving Software Product Lines with Aspects.
http://www.lancs.ac.uk/postgrad/figueire/spl/icse08/

[11] Figueiredo, E. et al. On the Maintainability of Aspect-Oriented
Software: A Concern-Oriented Measurement Framework. Proc. of
European Conf. on Soft. Maint. and Reeng. (CSMR). Athens, 2008.

[12] Figueiredo, E., Garcia, A., and Lucena, C. AJATO: An AspectJ
Assessment Tool. Proceedings of ECOOP (demo), Nantes, 2006.

[13] Filho, F. et al. Exceptions and Aspects: The Devil is in the Details.
Proc. of Int’l Symp. on Foundations of Software Eng. (FSE), 2006.

[14] Garcia, A. et al. Modularizing Design Patterns with Aspects: A
Quantitative Study. Transactions on AOSD, 1, pp. 36-74, 2006.

[15] Greenwood, P. et al. On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study. Proc. of ECOOP, Berlin, 2007.

[16] Kästner, C., Apel, S. and Batory, D. A Case Study Implementing
Features using AspectJ. Proc. of Int’l SPL Conference (SPLC), 2007.

[17] Kiczales, G. et al. Aspect-Oriented Programming. Proc. of ECOOP,
LNCS 1241, Springer, pp. 220-242, 1997.

[18] Krueger, C. Easing the Transition to Software Mass Customization.
Proc. of 4th Int’l workshop on Software Product Family Engineering,
pp. 282–293, Bilbao, 2001.

[19] Kulesza, U. et al. Improving Extensibility of Object-Oriented
Frameworks with Aspect-Oriented Programming. Proceedings of
Int’l Conference on Software Reuse (ICSR), Torino, 2006.

[20] Meyer, B. Object-Oriented Software Construction, 1st ed. Prentice-
Hall, Englewood Cliffs, 1988.

[21] Mezini, M. and Ostermann, K. Conquering Aspects with Caesar.
Proc. of AOSD, pp. 90-99, Boston, USA, 2003.

[22] Mezini, M. and Ostermann, K. Variability Management with
Feature-Oriented Programming and Aspects. Proceedings of FSE,
pp.127-136, 2004.

[23] Pohl, K., Böckle, G., and Linden, F. J. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc, 2005.

[24] Robillard, M. and Murphy, G. Representing concerns in source code.
Trans. on Software Eng. and Methodology (TOSEM), 16(1), 2007.

[25] Sant’Anna, C. et al. On the Reuse and Maintenance of Aspect-
Oriented Software: An Assessment Framework. Proc. of Brazilian
Symposium. on Software Engineering (SBES), pp. 19-34, 2003.

[26] Smaragdakis, Y. and Batory, D. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-Based
Designs. ACM TOSEM, 11(2), 2002.

[27] The AspectJ Project. http://eclipse.org/aspectj/.
[28] Yau, S. and Collofello, S. Design Stability Measures for Software

Maintenance. Trans. on Softw. Engineering, 11(9), p. 849-856, 1985.
[29] Young, T. Using AspectJ to Build a Software Product Line for

Mobile Devices. MSc dissertation, Univ. of British Columbia, 2005.
[30] Young, T. and Murphy, G. Using AspectJ to Build a Product Line

for Mobile Devices. Proceedings of AOSD (demo), Chicago, 2005.

