
Proceedings of GOW 2012, pp. 1 � 4.

A hybrid algorithm between branch-and-bound and outer
approximation for Mixed Integer Nonlinear Programming

Wendel A. X. Melo1, Marcia H. C. Fampa2, and Fernanda M. P. Raupp3

1 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, wendelmelo@cos.ufrj.br

2 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, fampa@cos.ufrj.br

3 Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil, fraupp@puc-rio.br

Abstract In this work, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming
combining branch-and-bound and outer approximation algorithms in an e�ective and e�cient way.

Keywords: mixed integer nonlinear programming, branch-and-bound, outer approximation, hybrid algorithm

1. Introduction

Mixed Integer Nonlinear Programming (MINLP) problems are characterized by the presence
of nonlinear functions of continuous and discrete variables. The MINLP problem addressed in
this work can be algebraically represented in the following way:

(P ) minimizex,y f(x, y)
s. t.: g(x, y) ≤ 0

x ∈ X, y ∈ Y ∩Zny

(1)

where X and Y are polyhedral subsets of Rnx and Rny , respectively, and Y is bounded. The
functions f : X×Y → R and g : X×Y → Rm are convex and twice continuously di�erentiable.
We call problem (1) by P and its continuous relaxation by P̃ .

Algorithms in two distinct methodological classes have been employed to solve P : outer ap-
proximation algorithms [2] and branch-and-bound algorithms (the reader interested in MINLP
algorithms can see [3, 4]). In [1], a hybrid approach combining algorithms in these two classes
was introduced. In this work, we propose a new hybrid algorithm combining also the two cited
methodologies in a more e�ective way than [1]. Our main goal is to potentialize the particular
advantages of each class and remediate theirs drawbacks. In Section 2, we present an outer
approximation algorithm and in Section 3, we show the proposed hybrid approach.

2. Outer Approximation

Proposed by Duran and Grossmann in [2], the Outer Approximation (OA) algorithm alternates
between solving a Mixed Integer Linear Programming problem (MILP) and one or two NonLin-
ear Programming problems (NLP). Its main idea is to approximate P by the following MILP
problem that is built using linearization of functions in P on a set T of t linearization points,



2 Wendel A. X. Melo, Marcia H. C. Fampa, and Fernanda M. P. Raupp

i.e., T = {(x0, y0), (x1, y1), . . . , (xt, yt)}:(
POA(T )

)
minα,x,y α

s. t.: ∇f(xk, yk)T
(
x− xk
y − yk

)
+ f(xk, yk) ≤ α, ∀(xk, yk) ∈ T

∇g(xk, yk)T
(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0, ∀(xk, yk) ∈ T

x ∈ X, y ∈ Y ∩Zny .

(2)

As P is convex, we notice that problem (2) is a relaxation of P , which provides valid lower
bounds to P . The baseline of OA algorithm is showed in Algorithm 1. New linearization points
are added to set T , as the algorithm evolves. This strengthens the relaxation given by (2) and
generates a non-decreasing sequence of lower bounds to P .

Let (x̂, ŷ) be an optimal solution of an instance of problem (2). The integer variable values
ŷ are used to build the following NLP problem from P :

(Pŷ) minimizex f(x, ŷ)
s. t.: g(x, ŷ) ≤ 0

x ∈ X.
(3)

Suppose problem (3) is feasible and let x̄ be an optimal solution. So, the point (x̄, ŷ) provides
an upper bound to P . Thus, OA algorithm adds this point to the set of linearization points T
and starts a new iteration using as stopping rule the annulment of the optimality gap.

In the case problem (3) is infeasible, OA algorithm solves the following feasibility problem:

(P Vŷ ) minimizeu,x
∑m
i=1 ui

s. t.: g(x, ŷ) ≤ u
x ∈ X, u ∈ (R+)m

(4)

Let (ǔ, x̌) be an optimal solution of (4) in the described context. Then, the point (x̌, ŷ) is added
to the set T . Conforming demonstrated in [2], if the KKT conditions are satis�ed at the optimal
solutions of (3) and (4), OA algorithm converges in a �nite number of iterations.

ALGORITHM 1: Outer approximation ;
INPUT: P : Problem (1), T0: initial set of linearization points (it can be empty) ;
OUTPUT: (x∗, y∗): optimal solution of P ;

zU = +∞ ; zL = −∞ ;
Let (x0, y0) be an optimal solution of P̃ ;
T = {T0 ∪ (x0, y0)} ; k = 1 ;
WHILE zU − zL > 0 AND POA(T ) is feasible
{

Let (α̂, x̂, ŷ) be an optimal solution of POA(T ) ;
zL = α̂ ; yk = ŷ ;
IF Pŷ is feasible
{

Let xk be an optimal solution of Pŷ ;

IF f(xk, yk) < zU

{
zU = f(xk, yk) ;
(x∗, y∗) = (xk, yk) ;

}
}
ELSE
{

Let xk be an optimal solution of PV
ŷ ;

}
T = T ∪ (xk, yk) ;
k = k + 1 ;

}



Mixed Integer Nonlinear Programming 3

3. Our hybrid algorithm

ALGORITHM 2: Our hybrid algorithm ;
INPUT: P : Problem (1), OA(P̄ , T I , zU , time): OA procedure that address P̄ , with initial linearization points set
T I , upper bound zU with time limited to time seconds. OA procedure returns: status: status of OA application,
(x̄, ȳ): best obtained solution of P̄ , TF : �nal set of linearization points, z̄L: lower bound to P̄ ;
OUTPUT: (x∗, y∗): optimal solution of P ;

zU =∞ ; Let (x0, y0) be an optimal solution of P̃ ;
TP = (x0, y0) \\ Initial linearization points to P ;
[status, (x̄, ȳ), TF , z̄L] = OA(P̃ , TP , zU , OA time) ;
IF status = �optimal solution� OR status = �feasible solution�
{

(x∗, y∗) = (x̄, ȳ) ; zU = f(x̄, ȳ) ;
}
IF status = �optimal solution�, THEN RETURN ;
Choose a variable yj with fractional value y0j ;

Y 1 = Y ∩ {y ∈ Rny : yj ≤ byjc} ; Y 2 = Y ∩ {y ∈ Rny : yj ≥ dyje} ;
Let Li be a lower bound to node i ; L1 = L2 = max{f(x0, y0), z̄L} ;
Let N = {1, 2} be the initial list of open nodes ;
i = 2 ; iter = 0 ; TP = TP ∪ TF ;

BBLOOP:
WHILE N 6= ∅
{

Choose a node k of N ; N = N \ {k} ; iter = iter + 1 ;
Let (xk, yk) be an optimal solution of P̃Y k ;
IF f(xk, yk) < zU

{
IF yk is integer
{

zU = f(xk, yk) ; (x∗, y∗) = (xk, yk) ; TP = TP ∪ {(xk, yk)} ;
N = N \ {j : Lj ≥ zU}); \\ Pruning

}
ELSE
{

L̄ = f(xk, yk) ;
IF iter ≡ 0 (mod freq OA subprob) \\ Applying OA to subproblem
{

TS = {(xk, yk)} ;
[status, (x̄, ȳ), TF , z̄L] = OA(PY k , TS , zU , OA time) ;
IF status = �optimal solution� OR status = �feasible solution�
{

zU = f(x̄, ȳ) ; (x∗, y∗) = (x̄, ȳ) ; N = N \ {j : Lj ≥ zU} \\ Pruning
TP = TP ∪ {(x̄, ȳ)} ;

}
IF status = �optimal solution� OR status = �infeasible problem�
{

GO TO BBLOOP;
}
L̄ = max{L̄, z̄L} ;

}
Choose a variable yj with fractional value ykj ; \\ Branching
Y i+1 = Y k ∩ {y ∈ Rny : yj ≤ byjc} ; Y i+2 = Y k ∩ {y ∈ Rny : yj ≥ dyje} ;
Li+1 = Li+2 = L̄ ; N = N ∪ {i+ 1, i+ 2} ; i = i+ 2 ;

}
}
IF iter ≡ 0 (mod freq OA prob)
{

[status, (x̄, ȳ), TF , z̄L] = OA(P, TP , zU , OA time) ; \\Applying OA to P
IF status = �optimal solution�
{

(x∗, y∗) = (x̄, ȳ) ; RETURN ;
}
IF status = �feasible solution�
{

zU = f(x̄, ȳ) ; (x∗, y∗) = (x̄, ȳ) ; N = N \ {j : Lj ≥ zU} ; \\ Pruning
}
TP = TP ∪ TF ; \\ Accumulating linearization points

}
}



4 Wendel A. X. Melo, Marcia H. C. Fampa, and Fernanda M. P. Raupp

Here, we propose a new hybrid algorithm combining branch-and-bound and outer approx-
imation algorithms, showed in Algorithm 2. The inspiration to develop this algorithm comes
from the hybrid algorithm proposed by Bonami et al. in [1]. Let us �rst de�ne the subproblem
addressed at each node of branch-and-bound tree in a given partition Ȳ ⊂ Y as:

(PȲ ) minimizex,y f(x, y)
s. t.: g(x, y) ≤ 0

x ∈ X, y ∈ Ȳ ∩Zny .
(5)

The general idea behind the proposed approach is very simple: it makes space partitioning in
the NLP branch-and-bound tree, and, then, applies outer approximation algorithm to some
of the partitions Y k, i.e., applies OA to some subproblems PY k , with a time limit to spend.
Bonami et al. adopt this strategy only once in their algorithm before beginning the space
partitioning, i.e., OA is applied to solve the original MINLP problem in the root node, as they
use the OA based branch-and-cut [5]. Here, we adopt this strategy in the root node and also
in some generated subproblems along the evolution of the algorithm, resulting in several calls
to OA procedure. During enumeration, the proposed algorithm comes back to the original
MINLP problem considered in the root node to make new OA iterations with limited time.
Integer solutions found in the branch-and-bound tree are used as linearization points when we
apply again OA algorithm to solve P . On the other hand, OA algorithm collaborates with
enumeration scheme providing stronger lower bounds to the addressed subtrees and integer
solutions that improve the upper bound to P .

At every freq OA subprob branch-and-bound iterations (e.g. 50), OA algorithm is applied to
the current subproblem PY k and at every freq OA prob iterations (e.g. 200), OA algorithm is
applied to the original problem P . We observe that if we interrupt the OA algorithm at the end
of a given iteration, saving the set of linearization points, and later restart it by using this same
set as input, OA algorithm continues as the same way as if it has never been interrupted, i.e.,
when we save the set of the current linearization points at the end of an iteration, we are saving
the current state of algorithm as a whole. In this way, considering the calls to OA procedure
at every freq OA prob branch-and-bound iterations, this would be, in principle, like solving P
using OA algorithm by making �pauses" in its execution. During these �pauses", the proposed
algorithm performs freq OA prob branch-and-bound iterations. Actually, it does not happen
precisely in this way because during these �pauses", we can add new linearization points from
integer solutions found by branch-and-bound algorithm. In this sense, we hope to speed up the
performance of OA algorithm, i.e., saving some of its regular iterations.

The results of preliminary computational tests show that the proposed hybrid algorithm has
better performance in comparison to pure outer approximation, pure branch-and-bound and
hybrid from [1] algorithms on several instances of MINLP. The proposed hybrid algorithm will
be available in the new open MINLP solver under development called Muriqui.

References

[1] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, A. Wächter. An Algorithmic Framework for Convex Mixed Integer Nonlinear
Programs. Discrete Optimization 5, pages 186�204, 2008.

[2] M. Duran, I. E. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Mathematical Programming 36, pages 307�339, 1986.

[3] I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming techniques. Optimiza-
tion and Engineering 3, pages 227�252, 2002.

[4] W. Melo. Algorithms for Mixed Integer Nonlinear Programming. Master thesis, Universidade Federal do
Rio de Janeiro (Federal University of Rio de Janeiro), 2012 (printed in portuguese).

[5] I. Quesada, I.E. Grossmann. An LP/NLP based branch and bound algorithm for convex MINLP opti-
mization problems. Computers & Chemical Engineering 16 10-11, pages 937�947, 1992.


