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ABSTRACT

We present a specialized branch-and-bound (B&B) algorithm for the Euclidean Steiner

tree problem (ESTP) in R
n and apply it to a convex mixed-integer nonlinear programming

(MINLP) formulation of the problem, presented by Fampa and Maculan. Our main emphasis

is on isomorphism pruning, in order to prevent the algorithm to solve equivalent subproblems

corresponding to isomorphic Steiner trees. The concept of representative Steiner topologies

is introduced, which allows pruning these subproblems and fixing variables. A more general

procedure is also proposed to improve the efficiency of the B&B, that may be extended to

the solution of a variety of problems. Computational results demonstrate substantial gains

compared to the standard B&B for convex MINLP.
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1 Introduction

The Euclidean Steiner tree problem (ESTP) is to find a tree of minimal Euclidean length

spanning a given set of points in R
n, using or not additional points in its construction. Given points

are called terminals, and additional points are Steiner points. The ESTP is NP-Hard (Hwang et al.

1992) and is notoriously difficult to solve in dimension greater than 2. An optimal solution of ESTP,

known as a Steiner minimal tree (SMT), satisfies some well-known properties (Hwang et al. 1992):

(i) an SMT on p terminals has at most p − 2 Steiner points, (ii) each terminal has degree between

one and three, and (iii) each Steiner point has degree three.

The topology of a Steiner tree is an important concept in solution methods for the ESTP

and is defined as the tree where the connections between terminals and Steiner points are specified,

but the locations of the Steiner points are not. A full Steiner topology (FST) for p terminals is a

topology with p−2 Steiner points, where all the terminals have degree one. Any SMT with non-full

topology can be related to a FST where some edges have zero length.

Only a few papers have considered the exact solution for the ESTP in R
n, when n ≥ 3

(see (Gilbert and Pollak 1968, Smith 1992, Maculan et al. 2000, Fampa and Maculan 2004, Fampa

and Anstreicher 2008, Van Laarhoven and Anstreicher 2013)). Mathematical-programming formu-

lations were only presented in (Maculan et al. 2000, Fampa and Maculan 2004). In (Maculan et al.

2000) the problem is formulated as a non-convex mixed-integer nonlinear programming (MINLP)

problem, and in (Fampa and Maculan 2004) the model is convexified using a Big-M parameter

(we use the standard terminology of convex MINLP for an MINLP that has a convex continuous

relaxation). No computational results based on the formulations were presented.

Our objective is to consider the formulation for the ESTP in (Fampa and Maculan 2004),

presented in §2, and take advantage of recent advances convex MINLP to solve the ESTP. Numerical

experiments with the model, where we applied the branch-and-bound (B&B) algorithms for convex

MINLP described in (Melo et al. 2014), revealed the difficulty in solving even small instances of

the problem, and motivated us to develop a B&B algorithm specialized for the ESTP. The MINLP

B&B algorithms in (Melo et al. 2014) were coded in the solver Muriqui, and the specialized

B&B algorithm presented in this work is named SAMBA (Steiner Adaptations on Muriqui B&b

Algorithm).

The main difficulty observed in the experiments with Muriqui comes from the large

number of isomorphisms among the trees that span terminals and Steiner points, leading the B&B

algorithm to solve equivalent or symmetric subproblems several times. We present in this work a

procedure to avoid the consideration of isomorphic trees in the B&B enumeration scheme, based

on the idea of representatives for classes of isomorphic Steiner topologies. The difficulty related to

symmetry in the solution of integer-programming problems is well known (Margot 2009), and our

approach is based on the idea of representatives for classes of isomorphic subproblems introduced

in (Margot 2002).

In the remaining of the paper, we discuss how representative topologies are used to im-

prove the B&B algorithm. We propose a procedure to fix variables in a preprocessing phase of the

B&B and a pruning-by-isomorphism strategy. Still in preprocessing, we use geometric conditions

for the SMT to reduce the number of representative topologies. Besides the procedures related to the

concept of representative topologies, we present a more general procedure, called Dynamic Con-

straints Set (DCS); it eliminates nonlinear redundant constraints from subproblems and was very

effective in our experiments. The DCS strategy can be extended to a variety of MINLPs having dis-

junctive constraints. We propose a heuristic procedure to improve the upper bound during the B&B

execution and show how we deal with the non-differentiability of the Euclidean norm function at

points where the solution degenerates. Finally, we present computational results demonstrating the

effectiveness of SAMBA.
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2 An MINLP formulation

In (Fampa and Maculan 2004), Fampa and Maculan formulate the ESTP as the MINLP

problem

FM: min
∑

[i,j]∈E dij , (1)

s.t.: dij ≥ ‖xi − xj‖ −M(1− yij), [i, j] ∈ E1, (2)

dij ≥ ‖ai − xj‖ −M(1− yij), [i, j] ∈ E2, (3)
∑

j∈S yij = 1, i ∈ P, (4)
∑

i∈P yij +
∑

k<j,k∈S ykj +
∑

k>j,k∈S yjk = 3, j ∈ S, (5)
∑

i<j,i∈S yij = 1, j ∈ S − {p+ 1}, (6)

yij ∈ {0, 1}, dij ∈ R, [i, j] ∈ E1 ∪ E2, (7)

xi ∈ R
n, i ∈ S, (8)

where P ={1, . . . , p} and S={p+ 1, . . . , 2p− 2} are indices for terminals a1, . . . , ap and Steiner

points xp+1, . . . , x2p−2. [i, j] is an edge of the graph G = (P ∪S,E1∪E2), with E1={[i, j]|i, j ∈
S, i < j} and E2={[i, j]|i ∈ P, j ∈ S}.

Variable yij indicates if [i, j] is in the SMT. ‖ · ‖ is the Euclidean norm. Variable dij is the

length of the edge [i, j], and constraints (2–3) ensure that the length is only considered if the edge is

in the tree. The Big-M parameter is an upper bound on the distance between two nodes in a SMT;

M =maxi,j∈P {‖ai − aj‖}. Constraints (4–6) model a FST, constraints (4–5) enforce degree 1 for

terminals and degree 3 for Steiner points, and constraint (6) prevents subcycles.

3 Representative topologies and the B&B algorithm

Due to the large number of isomorphic FSTs, the B&B algorithm, when applied to for-

mulation FM of the ESTP, generally solves equivalent subproblems many times and, because of

this, the solution of even moderate-sized instances may become very challenging. In Figure 1 we

show two isomorphic FSTs for p = 4 that belong to the feasible set of FM, where nodes 5 and 6 are

Steiner points and the other nodes are terminals.

1 5 2

3 6 4

(a)

3 5 4

1 6 2

(b)

Figure 1: Two isomorphic FSTs for p = 4

We implemented a procedure for generating non-isomorphic representatives for all FSTs

of FM. We code the non-isomorphic FSTs and save them in a lexicographic order in a set Ψ. We

construct the FSTs one by one and save a FST if it is not isomorphic to any FST already saved.

Checking if two FSTs are isomorphic is done in polynomial time (Kelly 1957, Köber et al. 1993),

and although the number of non-isomorphic FSTs grows exponentially with the number of terminals

p, the representatives do not depend on the instance data of the ESTP. Therefore, the procedure is

independent of the B&B algorithm, and once we save the set for a given p, we may apply it to the

solution of any instance of the same size. Furthermore, in the construction of representative FSTs

with p′ > p terminals, we can make use of the representative FSTs with p terminals, in case it is not

possible to save the representatives for all p′ terminals. We next describe the main procedures added
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to the NLP B&B algorithm implemented in the MINLP solver Muriqui in order to specialize it to

solve more efficiently the ESTP.

4 The preprocessing phase

Geometric conditions satisfied by a SMT may be used to eliminate topologies from the

list of representative FSTs in a preprocessing phase of our B&B algorithm. Let ηi be the distance

from terminal ai to the nearest other terminal, i.e.,

ηi := min
j∈P, j �=i

{‖ai − aj‖}, for all i ∈ P.

Let T be a minimum-length spanning tree on terminals ai, i ∈ P , and βij be the length

on the longest edge on the unique path between ai and aj in T , for i, j ∈ P . Two conditions on

SMTs based on these parameters are known (see (Van Laarhoven and Anstreicher 2013)):

1. Terminals ai and aj may be connected to a common Steiner point only if

‖ai − aj‖ ≤ ηi + ηj .

2. Terminals ai and aj may be connected by two or fewer Steiner points only if

‖ai − aj‖ ≤ ηi + ηj + βij .

Considering these two conditions, we eliminate from Ψ, all FSTs that do not satisfy them.

We also use the set Ψ to fix variables, still in the preprocessing phase of the B&B algo-

rithm.

Let E+ be the set of edges of G that belong to every topology in Ψ, and E− be the set of

edges that do not belong to any topology in Ψ. If [i, j] ∈ E+, we set yij = 1, and if [i, j] ∈ E−,

we set yij = 0.

5 Branching

Our B&B algorithm is divided into two phases. In phase 1 (phase 2), the branching

variable is selected among yij ∈ (0, 1) in the solution of the subproblem continuous relaxation,

such that [i, j] belongs to E1 (E2).

In phase 1, the spanning tree connecting the Steiner points is built, and the selection of the

branching variable follows the standard strategy regarding the distance between yij and an integer

value. We choose the variable corresponding to the greatest value of min{yij , 1− yij}. In phase 2,

terminals are connected to the partially constructed tree, and the branching variable yij corresponds

to the farthest terminal aj to the other terminals already connected to the tree, attempting to increase

the lower bounds rapidly.

Once the branching variable yij is selected at a node of the B&B tree, the descendants

of the node represent different possibilities for connecting the Steiner point xj (in phase 1) or the

terminal aj (in phase 2) to the tree, dividing the feasible region of FM according to constraint (6)

or (4), resp.

6 Pruning by isomorphism

At each node of the B&B tree, we use the set Ψ to prune all descendant nodes where the

variables fixed at 1 do not correspond to edges in any representative FST. This is how we avoid

solution of subproblems corresponding to isomorphic trees.
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7 Dynamic Constraint Set (DCS)

Constraints (2-3) are a typical way of modeling the requirement of considering the con-

straints

dij ≥ ‖xi − xj‖
and

dij ≥ ‖ai − xj‖
only when the corresponding yij are equal to 1.

The Big-M parameter is chosen to make the constraints redundant when yij = 0.

Although the these redundant inequalities do not modify the solution of B&B subprob-

lems, it does increase considerably the running time. Therefore, we have added to our B&B al-

gorithm, a strategy named “Dynamic Constraint Set” (DCS) — the idea is to dynamically change

the set of constraints of the subproblems, eliminating the redundant constraints. Constraints (2-3)

corresponding to yij fixed at 0, are accordingly removed from the model.

8 A heuristic

We propose a heuristic procedure to improve the upper bound on the optimal value of the

problem, which can be applied at any node of the B&B enumeration tree.

Let ȳij be the value of the binary variable yij at the optimal solution of the relaxation

solved at a node of the B&B tree. If the solution does not satisfy the integrality constraints, we

consider the graph G = (V,E) defined in Section 2 and assign to each edge [i, j] of E, the weight

given by wij := 1 − ȳij . Considering these weights, we then search for a minimum spanning tree

of G having a FST.

For the computation of this tree, we propose a simple greedy heuristic that starts consid-

ering a tree with the first two Steiner points p + 1 and p + 2 and then iteratively connects the next

Steiner point to a node already in the tree, such that the new edge added to the tree has minimum

possible weight and the degree condition on a FST is not violated, i.e., no Steiner point receives

more than three neighbors. When the Steiner points are all in the tree, the process continues with

the terminal nodes, taking into account that terminal nodes should be connected to Steiner points

and can be connected to any one of them.

Once the FST is obtained by the heuristic, we locate the Steiner points by solving the

convex problem obtained by fixing all integer variables in (FM). The solution obtained is feasible

for the ESTP, and therefore the upper bound on its optimal value is possibly updated. Furthermore,

since this is a best-possible solution for the given topology, the following cut can be added to all

subproblems still open in the B&B enumeration tree:

∑

[i,j]∈E
ŷijyij ≤ 2p− 4,

where ŷ is the characteristic vector of the tree, i.e. ŷij = 1 if edge [i, j] belongs to the tree, and

ŷij = 0, otherwise.

9 Dealing with the non-differentiability

The continuous relaxation of FM, as well as the problems obtained when we fix the val-

ues of all binary variables yij in FM, are convex NLP problems that we can solve to optimality by

general-purpose NLP solvers (e.g. Ipopt, Mosek). Most NLP solvers, however, require all func-

tions in the problem to be twice continuously differentiable, which is not the case for the problems

2801



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Table 1: Average results

Dimension Muriqui B&B SAMBA

gap cpu time gap cpu time

(%) (sec) (%) (sec)

n = 3 84 14400.38 0 240.96

n = 4 84 14401.12 0 740.87

n = 5 82 14400.34 0 1301.54

mentioned above, due to the non-differentiability of the Euclidean norm at points where the solution

degenerates. There are different ways that we can deal with the particular non-differentiability that

we face. The approach used in this work was to approximate
√
w by h(w) :=

√
w + δ − √

δ for

some small δ > 0.

10 Computational results and conclusions

We compare the performance of the B&B algorithm of Muriqui with the specialized

B&B algorithm implemented as SAMBA — both are implemented in C++ and all runs were on a

3.60 GHz core i7-4790 CPU, 8 MB, 16 GB, running under Linux, with a time limit of 4 hrs. MOSEK
(Andersen and Andersen 1999) was used to solve the subproblems relaxations in B&B. Instances

considered were the same used in (Fampa and Anstreicher 2008): 30 instances with 10 terminals,

10 in each dimension n = 3, 4, 5. No instances could be solved by Muriqui within the time limit,

with an average duality gap of 83%=100%·(upper bound - lower bound)/upper bound, endorsing

the well-known difficulty of the ESTP. We also applied the MINLP solver Bonmin (Bonami et al.

2008), with similar results to those of Muriqui; no instance could be solved in the time limit. In

contrast, we solved all 30 instances to optimality with SAMBA, as shown in Table 1.

The results indicate significant gains obtained by the procedures we propose, turning prac-

tical the application of B&B to the convex MINLP formulation of the ESTP.

Although the reduction on the number of representative FSTs, when compared to the

number of FSTs in the feasible solution of FM, is very impressive, the number of representatives

still grows extremely fast, and it would not be possible to save all representative FSTs for a signif-

icantly larger number of terminals. We note, however, that in case we are solving problems with

p′ terminals, and we have only the list of non-isomorphic FSTs with p terminals, where p < p′, it

is trivial to construct the list of non-isomorphic spanning trees on the p′ − 2 Steiner points, taking

as input the list of representatives for the spanning trees on the p − 2 Steiner points already con-

structed. This pre-saved list may still be used to initiate the B&B algorithm, and then, during the

execution of the B&B, when the terminals are added to the Steiner trees, we can construct the list

of representative FSTs as they are iteratively generated by the algorithm, as suggested in (Margot

2002). This is subject of our future research.

Finally, we note that our DCS strategy decreased the running time of B&B by 57% on

average. DCS was very effective and can be applied to other MINLPs having disjunctive constraints

modeled with Big-M parameters.
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