ORI: Pontuação e o modelo de espaço vetorial

Marcelo Keese Albertini

Faculdade de Computação Universidade Federal de Uberlândia

Índice

Porque recuperação ordenada?

Frequência de termos

Peso tf-idf

O modelo espaço de vetores

Veremos hoje

 Ordenando resultados de busca: importância (ao invés de apresentar um conjunto desordenado de resultados)

Veremos hoje

- Ordenando resultados de busca: importância (ao invés de apresentar um conjunto desordenado de resultados)
- ► Frequência de termos: base da ordenação de resultados (ranking)

Veremos hoje

- Ordenando resultados de busca: importância (ao invés de apresentar um conjunto desordenado de resultados)
- ► Frequência de termos: base da ordenação de resultados (ranking)
- ► Tf-idf ranking: esquema tradicional de ordenação

Até agora, consultas foram booleanas.

- Até agora, consultas foram booleanas.
 - Documentos são adequados ou não para uma consulta

- Até agora, consultas foram booleanas.
 - Documentos são adequados ou não para uma consulta
- Bom para usuários especialistas com conhecimento avançado sobre a coleção

- Até agora, consultas foram booleanas.
 - Documentos são adequados ou não para uma consulta
- Bom para usuários especialistas com conhecimento avançado sobre a coleção
- ► Bom para programas: programas podem processar milhares de resultados

- Até agora, consultas foram booleanas.
 - Documentos são adequados ou não para uma consulta
- Bom para usuários especialistas com conhecimento avançado sobre a coleção
- ▶ Bom para programas: programas podem processar milhares de resultados
- ► Não tão bom para usuários comuns

- Até agora, consultas foram booleanas.
 - Documentos são adequados ou não para uma consulta
- Bom para usuários especialistas com conhecimento avançado sobre a coleção
- ▶ Bom para programas: programas podem processar milhares de resultados
- Não tão bom para usuários comuns
- Consultas booleanas são de difícil escrita

- Até agora, consultas foram booleanas.
 - Documentos são adequados ou não para uma consulta
- Bom para usuários especialistas com conhecimento avançado sobre a coleção
- Bom para programas: programas podem processar milhares de resultados
- ► Não tão bom para usuários comuns
- Consultas booleanas são de difícil escrita
- Usuários não olham centenas de resultados

http://www.acervobiblioteca.ufu.br:8000/cgi-bin/gw/chameleon

► Muito pouco ou resultados demais

- ► Muito pouco ou resultados demais
- Exemplo consulta 1 (conjunção booleana): [recuperação AND informação]

- Muito pouco ou resultados demais
- Exemplo consulta 1 (conjunção booleana): [recuperação AND informação]
 - → centenas de resultados demais

- Muito pouco ou resultados demais
- Exemplo consulta 1 (conjunção booleana): [recuperação AND informação]
 - → centenas de resultados demais
- Exemplo 2 (conjunção booleana): [recuperação AND informação AND aplicação]

- ► Muito pouco ou resultados demais
- Exemplo consulta 1 (conjunção booleana): [recuperação AND informação]
 - ➤ → centenas de resultados demais
- Exemplo 2 (conjunção booleana): [recuperação AND informação AND aplicação]
 - ightharpoonup
 ightharpoonup 2 resultados quase nada

- Muito pouco ou resultados demais
- Exemplo consulta 1 (conjunção booleana): [recuperação AND informação]
 - ▶ → centenas de resultados demais
- Exemplo 2 (conjunção booleana): [recuperação AND informação AND aplicação]
 - ightharpoonup
 ightharpoonup 2 resultados quase nada
- difícil encontrar boa consulta para obter entre tudo ou nada

► Com ordenação, número de resultados não é problema

- Com ordenação, número de resultados não é problema
- ▶ Por exemplo, mostrar somente os 10 mais relevantes

- Com ordenação, número de resultados não é problema
- ▶ Por exemplo, mostrar somente os 10 mais relevantes
- Não sobrecarrega usuário

- Com ordenação, número de resultados não é problema
- ▶ Por exemplo, mostrar somente os 10 mais relevantes
- Não sobrecarrega usuário
- ▶ O que é necessário? Desenvolver um algoritmo de ranking de relevância de documentos

▶ Pontuar mais os documentos mais relevantes à consulta

- ▶ Pontuar mais os documentos mais relevantes à consulta
- ► Atribuir pontuação em [0,1] para cada par consulta-documento

- ▶ Pontuar mais os documentos mais relevantes à consulta
- ► Atribuir pontuação em [0,1] para cada par consulta-documento
- Medida numérica e objetiva da relevância do documento para a consulta

► Como pontuamos um par consulta-documento?

- Como pontuamos um par consulta-documento?
- ► Começamos com um consulta de um só termo

- Como pontuamos um par consulta-documento?
- Começamos com um consulta de um só termo
- ► Se o termo não ocorre no documento, pontuação 0

- Como pontuamos um par consulta-documento?
- Começamos com um consulta de um só termo
- Se o termo não ocorre no documento, pontuação 0
- Quanto maior a frequência do termo no documento, maior pontuação

- Como pontuamos um par consulta-documento?
- Começamos com um consulta de um só termo
- Se o termo não ocorre no documento, pontuação 0
- Quanto maior a frequência do termo no documento, maior pontuação
- Veremos alternativas

Alternativa 1: coeficiente de Jaccard

Alternativa 1: coeficiente de Jaccard

▶ Mede sobreposição de 2 conjuntos: *A* e *B*

- ▶ Mede sobreposição de 2 conjuntos: *A* e *B*
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ ou } B \neq \emptyset)$$

- ▶ Mede sobreposição de 2 conjuntos: *A* e *B*
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ ou } B \neq \emptyset)$$

▶ JACCARD(A, A) = 1

- ▶ Mede sobreposição de 2 conjuntos: A e B
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ ou } B \neq \emptyset)$$

- ▶ JACCARD(A, A) = 1
- ▶ JACCARD(A, B) = 0 se $A \cap B = 0$

- ▶ Mede sobreposição de 2 conjuntos: *A* e *B*
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ ou } B \neq \emptyset)$$

- ightharpoonup Jaccard(A, A) = 1
- ▶ JACCARD(A, B) = 0 se $A \cap B = 0$
- ► A e B não tem que ser do mesmo tamanho

- ▶ Mede sobreposição de 2 conjuntos: *A* e *B*
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ ou } B \neq \emptyset)$$

- ightharpoonup Jaccard(A, A) = 1
- ▶ JACCARD(A, B) = 0 se $A \cap B = 0$
- ► A e B não tem que ser do mesmo tamanho
- ▶ Sempre obtém número entre 0 e 1

Qual é a pontuação pelo coeficiente de Jaccard para:

- Qual é a pontuação pelo coeficiente de Jaccard para:
 - ► Consulta: "águas de março"

- Qual é a pontuação pelo coeficiente de Jaccard para:
 - ► Consulta: "águas de março"
 - ► Documento "Pedro Álvares Cabral chegou nas águas brasileiras em março"

- Qual é a pontuação pelo coeficiente de Jaccard para:
 - ► Consulta: "águas de março"
 - ► Documento "Pedro Álvares Cabral chegou nas águas brasileiras em março"
 - ▶ JACCARD(q, d) = 2/10

Não considera frequência dos termos

- Não considera frequência dos termos
- ► Termos raros são mais informativos que os frequentes

- Não considera frequência dos termos
- ► Termos raros são mais informativos que os frequentes
- Precisamos de modos para normalizar pelo tamanho do documento

- Não considera frequência dos termos
- ► Termos raros são mais informativos que os frequentes
- Precisamos de modos para normalizar pelo tamanho do documento
 - um documento grande provavelmente tem boa sobreposição com a maior parte das consultas mas não é necessariamente relevante

Matriz de incidência binária

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
César	1	1	0	1	1	1	
Calpúrnia	0	1	0	0	0	0	
Cleópatra	1	0	0	0	0	0	

. .

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}.$

Matriz de incidência binária

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
César	1	1	0	1	1	1	
Calpúrnia	0	1	0	0	0	0	
Cleópatra	1	0	0	0	0	0	

. . .

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}$.

Matriz de contagem

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
César	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleópatra	57	0	0	0	0	0	

. . .

Cada documento é representado como vetor de contagem $\in \mathbb{N}^{|V|}$.

Matriz de contagem

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
César	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleópatra	57	0	0	0	0	0	

. .

Cada documento é representado como vetor de contagem $\in \mathbb{N}^{|V|}$.

Desconsidera ordem dos termos em um documento.

- Desconsidera ordem dos termos em um documento.
- ► João é mais rápido que José tem mesma representação que José é mais rápido que João

- Desconsidera ordem dos termos em um documento.
- ► João é mais rápido que José tem mesma representação que José é mais rápido que João
- Isso é chamado de modelo bag of words.

- Desconsidera ordem dos termos em um documento.
- ▶ João é mais rápido que José tem mesma representação que José é mais rápido que João
- Isso é chamado de modelo bag of words.
- Seguiremos com mais detalhes do modelo bag of words.

A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.

- A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.
- Podemos usar tf para pontuar combinação consulta-documento.

- A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.
- Podemos usar tf para pontuar combinação consulta-documento.
- ▶ Porém, somente frequência não é bom porque:

- A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.
- Podemos usar tf para pontuar combinação consulta-documento.
- Porém, somente frequência não é bom porque:
- ► Um documento com tf = 10 ocorrências de um termo é mais relevante que um documento com apenas uma ocorrência tf = 1.

- A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.
- Podemos usar tf para pontuar combinação consulta-documento.
- ▶ Porém, somente frequência não é bom porque:
- Um documento com tf = 10 ocorrências de um termo é mais relevante que um documento com apenas uma ocorrência tf = 1.
- Mas não 10 vezes mais relevante

- A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.
- Podemos usar tf para pontuar combinação consulta-documento.
- ▶ Porém, somente frequência não é bom porque:
- Um documento com tf = 10 ocorrências de um termo é mais relevante que um documento com apenas uma ocorrência tf = 1.
- Mas não 10 vezes mais relevante
- Relevância não aumenta proporcionalmente com a frequência do termo.

- A frequência de termo tf_{t,d} do termo t no documento d é definido como o número de vezes que t ocorre em d.
- Podemos usar tf para pontuar combinação consulta-documento.
- Porém, somente frequência não é bom porque:
- Um documento com tf = 10 ocorrências de um termo é mais relevante que um documento com apenas uma ocorrência tf = 1.
- Mas não 10 vezes mais relevante
- Relevância não aumenta proporcionalmente com a frequência do termo.
- Um documento com diversos termos da consulta é mais relevante que outro documento com muitas repetições de apenas um termo

▶ O log da frequência do termo *t* em *d* é definido:

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{se} \ \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{caso} \ \mathsf{contrário} \end{array} \right.$$

▶ O log da frequência do termo *t* em *d* é definido:

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{se} \ \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{caso} \ \mathsf{contrário} \end{array} \right.$$

▶ $\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$: 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4 etc.

▶ O log da frequência do termo *t* em *d* é definido:

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{se} \ \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{caso} \ \mathsf{contrário} \end{array} \right.$$

- ▶ $\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$: 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4 etc.

pontuação-
$$\mathsf{tf}(q,d) = \sum_{t \in q \cap d} (1 + \log \mathsf{tf}_{t,d})$$

▶ O log da frequência do termo *t* em *d* é definido:

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{se} \ \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{caso} \ \mathsf{contrário} \end{array} \right.$$

- ▶ $\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$: 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4 etc.
- Pontuação para um par consulta-documento: soma em relação a termos t em q e d: $\mathbf{pontuação-tf}(q,d) = \sum_{t \in q \cap d} (1 + \log \mathbf{tf}_{t,d})$
- ▶ A pontuação é 0 se nenhum dos termos está presente no documento.

Exercício

- Calcular a pontuação de Jaccard e pontuação de tf para os pares consulta-documento:
- q: [informação sobre carros] d: "tudo o que você sempre quis saber sobre carros"
- q: [informação sobre carros] d: "informação sobre caminhões, informação sobre aviões, informação sobre trens"
- q: [carros verdes e caminhões verdes] d: "a polícia para carros verdes mais frequentemente"

Frequência no documento vs. frequência na coleção

Frequência no documento vs. frequência na coleção

▶ Frequência de termo no documento

Frequência no documento vs. frequência na coleção

- Frequência de termo no documento
- ► Frequência de termo na coleção

► Termos raros são mais informativos

- ► Termos raros são mais informativos
- ► Considere um termo em uma consulta que é raro na coleção, e.g. estoicismo

- ► Termos raros são mais informativos
- Considere um termo em uma consulta que é raro na coleção, e.g. estoicismo
- Um documento com esse termo é muito provavelmente relevante

- Termos raros são mais informativos
- Considere um termo em uma consulta que é raro na coleção, e.g. estoicismo
- Um documento com esse termo é muito provavelmente relevante
- ► → Nós queremos pesos altos para termos raros

- Termos raros são mais informativos
- Considere um termo em uma consulta que é raro na coleção, e.g. estoicismo
- Um documento com esse termo é muito provavelmente relevante
- ► → Nós queremos pesos altos para termos raros
- ► → Nós queremos pesos baixos para termos frequentes

df_t é a frequência na coleção de documentos, ou seja,é o número de documentos em que t aparece

- df_t é a frequência na coleção de documentos, ou seja,é o número de documentos em que t aparece
- df_t é uma medida inversa da informação do termo t

- df_t é a frequência na coleção de documentos, ou seja,é o número de documentos em que t aparece
- ▶ df_t é uma medida inversa da informação do termo t
- Define-se peso idf do termo t como segue:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

- df_t é a frequência na coleção de documentos, ou seja,é o número de documentos em que t aparece
- ▶ df_t é uma medida inversa da informação do termo t
- Define-se peso idf do termo t como segue:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

▶ idf_t é a medida de informação do termo

- df_t é a frequência na coleção de documentos, ou seja,é o número de documentos em que t aparece
- df_t é uma medida inversa da informação do termo t
- Define-se peso idf do termo t como segue:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

- ▶ idf_t é a medida de informação do termo
- ▶ $[\log N/\mathrm{df}_t]$ em vez de $[N/\mathrm{df}_t]$ para amenizar o efeito de idf

termo	df _t	idf _t
calpurnia	1	
animal	100	
domingo	1000	
voar	10,000	
sobre	100,000	
0	1,000,000	

Calcular idf_t usando a fórmula: $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

termo	df _t	idf_t
calpurnia	1	6
animal	100	
domingo	1000	
voar	10,000	
sobre	100,000	
0	1,000,000	

termo	df _t	idf _t
calpurnia	1	6
animal	100	4
domingo	1000	
voar	10,000	
sobre	100,000	
О	1,000,000	

termo	df _t	idf _t
calpurnia	1	6
animal	100	4
domingo	1000	3
voar	10,000	
sobre	100,000	
О	1,000,000	

termo	df _t	idf_t
calpurnia	1	6
animal	100	4
domingo	1000	3
voar	10,000	2
sobre	100,000	
О	1,000,000	

termo	df _t	idf _t
calpurnia	1	6
animal	100	4
domingo	1000	3
voar	10,000	2
sobre	100,000	1
О	1,000,000	

termo	df_t	idf_t
calpurnia	1	6
animal	100	4
domingo	1000	3
voar	10,000	2
sobre	100,000	1
О	1,000,000	0

► A medida idf influencia na ordenação quando há pelo menos 2 termos

- ► A medida idf influencia na ordenação quando há pelo menos 2 termos
- Por exemplo, na consulta "estoicismo antigo", peso idf aumenta o peso relativo de estoicismo e reduz peso relativo de antigo.

- ▶ A medida idf influencia na ordenação quando há pelo menos 2 termos
- Por exemplo, na consulta "estoicismo antigo", peso idf aumenta o peso relativo de estoicismo e reduz peso relativo de antigo.
- ▶ O idf tem pouco efeito em consultas com um termo.

Frequência na coleção vs. frequência no documento

termo	frequência na coleção	frequência no documento
seguro	10440	3997
tentar	10422	8760

- Frequência de t na coleção: número de ocorrências de t na coleção
- ► Frequência de *t* em documentos: número de documentos em que *t* ocorre

Frequência na coleção vs. frequência no documento

termo	frequência na coleção	frequência no documento
seguro	10440	3997
tentar	10422	8760

- Frequência de t na coleção: número de ocorrências de t na coleção
- ► Frequência de *t* em documentos: número de documentos em que *t* ocorre
- Qual termo é melhor como termo de busca?

Frequência na coleção vs. frequência no documento

termo	frequência na coleção	frequência no documento
seguro	10440	3997
tentar	10422	8760

- Frequência de t na coleção: número de ocorrências de t na coleção
- ► Frequência de *t* em documentos: número de documentos em que *t* ocorre
- Qual termo é melhor como termo de busca?
- Este exemplo sugere que df (e idf) é melhor como peso que cf (e "icf")

O peso tf-idf de um termo é o produto de peso tf e seu peso idf.

O peso tf-idf de um termo é o produto de peso tf e seu peso idf.

Þ

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathit{N}}{\mathsf{df}_t}$$

O peso tf-idf de um termo é o produto de peso tf e seu peso idf.

Þ

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathit{N}}{\mathsf{df}_t}$$

O peso tf-idf de um termo é o produto de peso tf e seu peso idf.

Þ

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

peso tf

O peso tf-idf de um termo é o produto de peso tf e seu peso idf.

$$w_{t,d} = \left(1 + \mathsf{log}\,\mathsf{tf}_{t,d}\right) \cdot \, \mathsf{log}\, rac{ extstyle N}{\mathsf{df}_t}$$

- peso idf
- Esquema bastante conhecido em RI.

O peso tf-idf de um termo é o produto de peso tf e seu peso idf.

Þ

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- ► Esquema bastante conhecido em RI.
- Outros nomes: tf.idf, tf x idf

Atribuir peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$

- Atribuir peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \operatorname{tf}_{t,d}) \cdot \log \frac{N}{\operatorname{df}_t}$
- ▶ O peso tf-idf . . .

- Atribuir peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$
- ▶ O peso tf-idf . . .
 - ...aumenta com o número de ocorrência em um documento. (frequência do termo)

- Atribuir peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$
- ▶ O peso tf-idf . . .
 - ...aumenta com o número de ocorrência em um documento. (frequência do termo)
 - ...aumenta com a raridade do termo na coleção. (frequência em document inversa)

Exercício: frequência de termo, coleção e documento

Quantidade	Símbolo	Definição
frequência de termo	$tf_{t,d}$	número de ocorrências de t em d
frequência de documentos	df_t	número de documentos em que <i>t</i> ocorre
frequência de coleção	cf _t	número total de ocorrências de <i>t</i> na coleção (incluindo re- petições em documentos)

- ► Relação entre df e cf?
- ► Relação entre tf e cf?
- ► Relação entre tf e df?

Matriz de incidência binária

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
César	1	1	0	1	1	1	
Calpúrnia	0	1	0	0	0	0	
Cleópatra	1	0	0	0	0	0	

. . .

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}.$

Matriz de incidência binária

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
César	1	1	0	1	1	1	
Calpúrnia	0	1	0	0	0	0	
Cleópatra	1	0	0	0	0	0	

• • •

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}$.

Matriz de contagem

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
César	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleópatra	57	0	0	0	0	0	

. . .

Cada documento é representado como vetor de contagem $\in \mathbb{N}^{|V|}$.

Matriz de contagem

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
César	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleópatra	57	0	0	0	0	0	

- -

Cada documento é representado como vetor de contagem $\in \mathbb{N}^{|V|}$.

Binário \rightarrow contagem \rightarrow matriz de pesos

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
César	8.59	2.54	0.0	1.51	0.25	0.0	
Calpúrnia	0.0	1.54	0.0	0.0	0.0	0.0	
Cleópatra	2.85	0.0	0.0	0.0	0.0	0.0	
misericórdia	1.51	0.0	1.90	0.12	5.25	0.88	
pior	1.37	0.0	0.11	4.15	0.25	1.95	

Cada documento é representado como um vetor de valores reais de pesos tf-idf $\in \mathbb{R}^{|V|}$.

Binário \rightarrow contagem \rightarrow matriz de pesos

	Marco	Júlio	Α	Hamlet	Otelo	Macbeth	
	Antônio	César	Tempestade				
Antônio	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
César	8.59	2.54	0.0	1.51	0.25	0.0	
Calpúrnia	0.0	1.54	0.0	0.0	0.0	0.0	
Cleópatra	2.85	0.0	0.0	0.0	0.0	0.0	
misericórdia	1.51	0.0	1.90	0.12	5.25	0.88	
pior	1.37	0.0	0.11	4.15	0.25	1.95	

Cada documento é representado como um vetor de valores reais de pesos tf-idf $\in \mathbb{R}^{|V|}$.

▶ Cada documento é representado em um vetor de pesos tf-idf $\in \mathbb{R}^{|V|}$.

- ► Cada documento é representado em um vetor de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- ▶ Então temos um espaço vetorial com |V| dimensões.

- ▶ Cada documento é representado em um vetor de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- ► Então temos um espaço vetorial com |V| dimensões.
- Termos são eixos do espaço.

- ► Cada documento é representado em um vetor de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- ► Então temos um espaço vetorial com |V| dimensões.
- Termos são eixos do espaço.
- Documentos são pontos ou vetores nesse espaço.

- ▶ Cada documento é representado em um vetor de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- Então temos um espaço vetorial com |V| dimensões.
- Termos são eixos do espaço.
- Documentos são pontos ou vetores nesse espaço.
- ▶ Alto número de dimensões: dezenas de milhões de dimensões em mecanismos de busca

- ▶ Cada documento é representado em um vetor de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- Então temos um espaço vetorial com |V| dimensões.
- Termos são eixos do espaço.
- Documentos são pontos ou vetores nesse espaço.
- Alto número de dimensões: dezenas de milhões de dimensões em mecanismos de busca
- Cada vetor usa muito espaço (maior parte das dimensões é zero)

▶ Ideia 1: fazer o mesmo para as consultas: representar no espaço de alta-dimensionalidade

- ▶ Ideia 1: fazer o mesmo para as consultas: representar no espaço de alta-dimensionalidade
- ► Ideia 2: Rankear documentos de acordo com sua proximidade à consulta

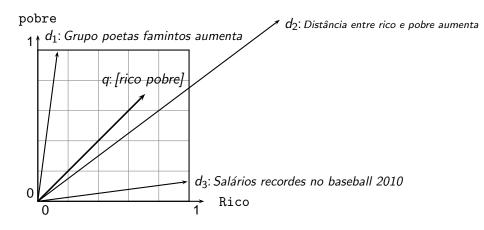
- Ideia 1: fazer o mesmo para as consultas: representar no espaço de alta-dimensionalidade
- Ideia 2: Rankear documentos de acordo com sua proximidade à consulta
- proximidade = similaridade

- Ideia 1: fazer o mesmo para as consultas: representar no espaço de alta-dimensionalidade
- Ideia 2: Rankear documentos de acordo com sua proximidade à consulta
- proximidade = similaridade
- ▶ proximidade ≈ distância negativa

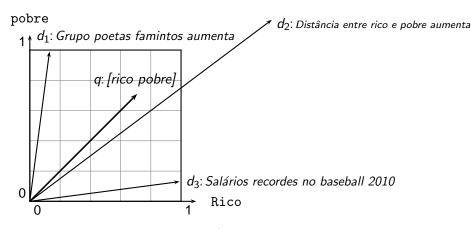
- Ideia 1: fazer o mesmo para as consultas: representar no espaço de alta-dimensionalidade
- Ideia 2: Rankear documentos de acordo com sua proximidade à consulta
- proximidade = similaridade
- ▶ proximidade ≈ distância negativa
- Objetivo: estamos evitando modelo booleana e resultados tudo ou nada.

- Ideia 1: fazer o mesmo para as consultas: representar no espaço de alta-dimensionalidade
- Ideia 2: Rankear documentos de acordo com sua proximidade à consulta
- proximidade = similaridade
- ▶ proximidade ≈ distância negativa
- Objetivo: estamos evitando modelo booleana e resultados tudo ou nada.
- Objetivo: rankear documentos relevantes em melhores posições que os não relevantes

distância (negativa) entre dois "pontos"


- distância (negativa) entre dois "pontos"
- ▶ (= distância entre pontos finais entre pares de vetores)

- distância (negativa) entre dois "pontos"
- ▶ (= distância entre pontos finais entre pares de vetores)
- ► Distância euclidiana


- distância (negativa) entre dois "pontos"
- ► (= distância entre pontos finais entre pares de vetores)
- Distância euclidiana
- Distância euclidiana é uma má ideia ...

- distância (negativa) entre dois "pontos"
- ▶ (= distância entre pontos finais entre pares de vetores)
- Distância euclidiana
- Distância euclidiana é uma má ideia . . .
- ... porque distância euclidiana é grande para vetores de diferentes comprimentos

Porque distância euclidiana é uma má ideia

Porque distância euclidiana é uma má ideia

A distância euclidiana de \vec{q} e $\vec{d_2}$ é grande, embora a distribuição de termos na consulta q e a distribuição dos termo no documento d_2 são muito similares.

Usar ângulo em vez de distância

Usar ângulo em vez de distância

 Ordena documento de acordo com o ângulo em relação à consulta

Usar ângulo em vez de distância

- Ordena documento de acordo com o ângulo em relação à consulta
- Avalie: pegue um documento d e adicione-o a si mesmo em d'.

Usar ângulo em vez de distância

- Ordena documento de acordo com o ângulo em relação à consulta
- Avalie: pegue um documento d e adicione-o a si mesmo em d'.
- ▶ d e d' têm mesma informação

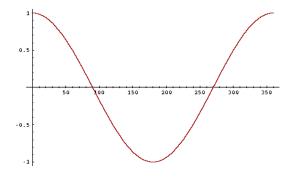
Usar ângulo em vez de distância

- Ordena documento de acordo com o ângulo em relação à consulta
- Avalie: pegue um documento d e adicione-o a si mesmo em d'.
- ▶ d e d' têm mesma informação
- O ângulo entre os dois documentos é 0, máxima similaridade
 ...

Usar ângulo em vez de distância

- Ordena documento de acordo com o ângulo em relação à consulta
- Avalie: pegue um documento d e adicione-o a si mesmo em d'.
- ▶ d e d' têm mesma informação
- O ângulo entre os dois documentos é 0, máxima similaridade
 ...
- ... mesmo que a distância euclidiana entre os dois documentos seja grande

As seguintes noções são equivalentes:


- As seguintes noções são equivalentes:
 - Ordenar documentos de acordo com o ângulo entre consulta e documento em ordem decrescente

- As seguintes noções são equivalentes:
 - Ordenar documentos de acordo com o ângulo entre consulta e documento em ordem decrescente
 - Ordenar documentos de acordo com coseno(consulta, documento) em ordem crescente

- As seguintes noções são equivalentes:
 - Ordenar documentos de acordo com o ângulo entre consulta e documento em ordem decrescente
 - Ordenar documentos de acordo com coseno(consulta, documento) em ordem crescente
- ► Coseno é uma função monotonicamente decrescente do ângulo para o intervalo [0°, 180°]

Coseno

Coseno

► Como calcular o coseno?

- ► Como calcular o coseno?
- Um vetor pode ter magnitude normalizada a 1 com (norma L_2): $\vec{x} = \frac{\vec{x}}{||\vec{x}||}$

- ► Como calcular o coseno?
- Um vetor pode ter magnitude normalizada a 1 com (norma L_2): $\vec{x} = \frac{\vec{x}}{||\vec{x}||}$
- Essa operação mapeia os vetores na unidade esférica . . .

- Como calcular o coseno?
- Um vetor pode ter magnitude normalizada a 1 com (norma L_2): $\vec{x} = \frac{\vec{x}}{||\vec{x}||}$
- Essa operação mapeia os vetores na unidade esférica . . .
- Assim, documentos mais extensos ou curtos tem mesma informação

- Como calcular o coseno?
- Um vetor pode ter magnitude normalizada a 1 com (norma L_2): $\vec{x} = \frac{\vec{x}}{||\vec{x}||}$
- Essa operação mapeia os vetores na unidade esférica . . .
- Assim, documentos mais extensos ou curtos tem mesma informação
- ► Efeito nos documentos *d* e *d'* (*d* "dobrado") : mesmo vetor depois da normalização

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

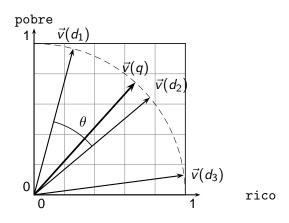
▶ qi é o peso tf-idf do termo i na consulta.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- ▶ qi é o peso tf-idf do termo i na consulta.
- \rightarrow d_i é o peso tf-idf do termo i no documento.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- ▶ qi é o peso tf-idf do termo i na consulta.
- $ightharpoonup d_i$ é o peso tf-idf do termo i no documento.


$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- ▶ qi é o peso tf-idf do termo i na consulta.
- $ightharpoonup d_i$ é o peso tf-idf do termo i no documento.
- Esta é a similaridade **coseno** entre \vec{q} e \vec{d} ou, de maneira equivalente, o coseno do ângulo entre \vec{q} e \vec{d} .

Coseno para vetores normalizados

- ▶ Para vetores normalizados, o coseno é equivalente ao produto escalar (também conhecido como produto interno).
- - (se \vec{q} e \vec{d} são normalizados).

Similaridade de coseno ilustrada

O quão similares são esses livros?

ReS: Razão e Sensibilidade

OeP: Orgulho e Preconceito

MVU: Colina dos

Vendavais

O quão similares são esses livros?

ReS: Razão e Sensibilidade

OeP: Orgulho e Preconceito

MVU: Colina dos

Vendavais

frequência de termos (contagem)

termo	ReS	OeP	MVU
afeição	115	58	20
ciúmes	10	7	11
fofoca	2	0	6
vendaval	0	0	38

frequência de termos (tf)

termo	ReS	OeP	MVU
afeição	115	58	20
ciúmes	10	7	11
fofoca	2	0	6
vendaval	0	0	38

frequência de termos (tf)

1.0+ log da frequência

termo	ReS	OeP	MVU
afeição	115	58	20
ciúmes	10	7	11
fofoca	2	0	6
vendaval	0	0	38

termo	ReS	OeP	MVU
afeição	3.06	2.76	2.30
ciúmes	2.0	1.85	2.04
fofoca	1.30	0	1.78
vendaval	0	0	2.58

frequência de termos (tf)

1.0+ log da frequência

termo	ReS	OeP	MVU	termo	ReS	OeP	MVU
afeição	115	58	20	afeição	3.06	2.76	2.30
ciúmes	10	7	11	ciúmes	2.0	1.85	2.04
fofoca	2	0	6	fofoca	1.30	0	1.78
vendaval	0	0	38	vendaval	0	0	2.58

Para simplificar este exemplo, não usaremos idf.

Se fosse usar, como seria o cálculo?

$$idf_t = log \frac{N}{df_t}$$

presença de termos (df)

termo	ReS	OeP	MVU
afeição	1	1	1
ciúmes	1	1	1
fofoca	1	0	1
vendaval	0	0	1

Se fosse usar, como seria o cálculo?

$$idf_t = log \frac{N}{df_t}$$

presença de termos (df)

idf

termo	ReS	OeP	MVU
afeição	1	1	1
ciúmes	1	1	1
fofoca	1	0	1
vendaval	0	0	1

termo	idf
afeição	$\log(3/3)=0$
ciúmes	$\log(3/3)=0$
fofoca	$\log(3/2) = 0.17$
vendaval	$\log(3/1) = 0.47$

log da frequência

ReS	OeP	MVU
3.06	2.76	2.30
2.0	1.85	2.04
1.30	0	1.78
0	0	2.58
	3.06 2.0 1.30	3.06 2.76 2.0 1.85 1.30 0

log da frequência

log da frequência & normalização do coseno

termo	ReS	OeP	MVU
afeição	3.06	2.76	2.30
ciúmes	2.0	1.85	2.04
fofoca	1.30	0	1.78
vendaval	0	0	2.58

& normalização do coseno				
termo	ReS	OeP	MVU	
afeição	0.789	0.832	0.524	
ciúmes	0.515	0.555	0.465	
fofoca	0.335	0.0	0.405	
vendaval	0.0	0.0	0.588	

log da frequência

log da frequência & normalização do coseno

termo	ReS	OeP	MVU
afeição	3.06	2.76	2.30
ciúmes	2.0	1.85	2.04
fofoca	1.30	0	1.78
vendaval	0	0	2.58

& normalização do coseno			
termo	ReS	OeP	MVU
afeição	0.789	0.832	0.524
ciúmes	0.515	0.555	0.465
fofoca	0.335	0.0	0.405
vendaval	0.0	0.0	0.588

►
$$cos(ReS,OeP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$$
.

log da frequência

log da frequência & normalização do coseno

termo	ReS	OeP	MVU
afeição	3.06	2.76	2.30
ciúmes	2.0	1.85	2.04
fofoca	1.30	0	1.78
vendaval	0	0	2.58

& normalização do coseno			
termo	ReS	OeP	MVU
afeição	0.789	0.832	0.524
ciúmes	0.515	0.555	0.465
fofoca	0.335	0.0	0.405
vendaval	0.0	0.0	0.588

- ► $cos(ReS, OeP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- ► $cos(ReS,MVU) \approx 0.79$

log da frequência

log da frequência & normalização do coseno

termo	ReS	OeP	MVU
afeição	3.06	2.76	2.30
ciúmes	2.0	1.85	2.04
fofoca	1.30	0	1.78
vendaval	0	0	2.58

& normalização do coseno			
termo	ReS	OeP	MVU
afeição	0.789	0.832	0.524
ciúmes	0.515	0.555	0.465
fofoca	0.335	0.0	0.405
vendaval	0.0	0.0	0.588

- ► $cos(ReS, OeP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(ReS,MVU) \approx 0.79$
- ▶ $cos(OeP,MVU) \approx 0.69$

Componentes do peso tf-idf

Frequên	cia de termos	Frequência	em Documentos	Nor	rmalização
n (natural)	$tf_{t,d}$	n (não)	1	n (nenhum)	1
I (logaritmo)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosseno)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (aumentado)	$0.5 + rac{0.5 imes ext{t} extsf_{t,d}}{ ext{max}_t (ext{t} extsf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}\!-\!df_\mathit{t}}{df_\mathit{t}}\}$	u (pivotado único)	
b (booleano)	$egin{cases} 1 & ext{se tf}_{t,d} > 0 \ 0 & ext{senão} \end{cases}$				
L (log média)	$\frac{1 + \log(tf_{t,d})}{1 + \log(media_{t \in d}(tf_{t,d}))}$				

Componentes do peso tf-idf

Frequên	cia de termos	Frequência	em Documentos	No	rmalização
n (natural)	$tf_{t,d}$	n (não)	1	n (nenhum)	1
I (logaritmo)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{d}f_t}$	c (cosseno)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (aumentado)	$0.5 + rac{0.5 imes ext{tf}_{t,d}}{ ext{max}_t (ext{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\textit{N}\!-\!df_t}{df_t}\}$	u (pivotado único)	•
b (booleano)	$\begin{cases} 1 & \text{se tf}_{t,d} > 0 \\ 0 & \text{senão} \end{cases}$				
L (log média)	$\frac{1 + \log(tf_{t,d})}{1 + \log(media_{t \in d}(tf_{t,d}))}$				

Melhor combinação conhecida de opções de pesos

Componentes do peso tf-idf

Frequên	cia de termos	Frequência	em Documentos	Nor	rmalização
n (natural)	$tf_{t,d}$	n (não)	1	n (nenhum)	1
I (logaritmo)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosseno)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (aumentado)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\text{max}\{0, \text{log} \frac{\textit{N} - df_t}{df_t}\}$	u (pivotado único)	1/ <i>u</i>
b (booleano)	$\begin{cases} 1 & \text{se tf}_{t,d} > 0 \\ 0 & \text{senão} \end{cases}$				
L (log média)	$\frac{1 + \log(tf_{t,d})}{1 + \log(media_{t \in d}(tf_{t,d}))}$				

Padrão: sem peso

► Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.

- Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.
- Notação: ddd.qqq

 Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.

Notação: ddd.qqq

Exemplo: Inc.ltn

► Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.

Notação: ddd.qqq

Exemplo: Inc.ltn

documento: log tf, sem peso df, normalização coseno

- ► Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.
- Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: log tf, sem peso df, normalização coseno
- consulta: log tf, idf, sem normalização

- Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.
- ► Notação: ddd.qqq
- Exemplo: Inc.ltn
- ▶ documento: log tf, sem peso df, normalização coseno
- consulta: log tf, idf, sem normalização
- É ruim não colocar peso idf no documento?

- ► Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.
- ► Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: log tf, sem peso df, normalização coseno
- consulta: log tf, idf, sem normalização
- É ruim não colocar peso idf no documento?
- Exemplo consulta: "melhor seguro carro"

- ► Frequentemente utiliza-se diferentes opções de pesos para consultas e documentos.
- ► Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: log tf, sem peso df, normalização coseno
- consulta: log tf, idf, sem normalização
- É ruim não colocar peso idf no documento?
- Exemplo consulta: "melhor seguro carro"
- Exemplo documento: "melhor seguro carro auto"

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		consulta					docume	ento		produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto										
melhor										
carro										
seguro										

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		consulta					docume	ento		produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0									
melhor	1									
carro	1									
seguro	1									

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		consulta					docume		produto	
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0					1				
melhor	1					0				
carro	1					1				
seguro	1					2				

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		consulta					docume		produto	
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0				1				
melhor	1	1				0				
carro	1	1				1				
seguro	1	1				2				

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		consulta					documento				
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.		
auto	0	0				1	1				
melhor	1	1				0	0				
carro	1	1				1	1				
seguro	1	1				2	1.3				

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		co	nsulta				docume	ento		produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000			1	1			
melhor	1	1	50000			0	0			
carro	1	1	10000			1	1			
seguro	1	1	1000			2	1.3			

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		co	nsulta				docume		produto	
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3		1	1			
melhor	1	1	50000	1.3		0	0			
carro	1	1	10000	2.0		1	1			
seguro	1	1	1000	3.0		2	1.3			

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		co	nsulta				docume	ento		produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3	0	1	1			
melhor	1	1	50000	1.3	1.3	0	0			
carro	1	1	10000	2.0	2.0	1	1			
seguro	1	1	1000	3.0	3.0	2	1.3			

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		co	nsulta				docume	ento		produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3	0	1	1			
melhor	1	1	50000	1.3	1.3	0	0			
carro	1	1	10000	2.0	2.0	1	1			
seguro	1	1	1000	3.0	3.0	2	1.3			

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		co	nsulta				docume	ento		produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3	0	1	1	1		
melhor	1	1	50000	1.3	1.3	0	0	0		
carro	1	1	10000	2.0	2.0	1	1	1		
seguro	1	1	1000	3.0	3.0	2	1.3	1.3		

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra	consulta					documento				produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3	0	1	1	1	0.52	
melhor	1	1	50000	1.3	1.3	0	0	0	0	
carro	1	1	10000	2.0	2.0	1	1	1	0.52	
seguro	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	

Colunas: tf: (sem peso) frequência de termo , tf-com-peso: log frequência de termo , df: frequência de documento , idf: frequência de documento inversa, peso: o peso final do termo na consulta ou documento, norm.: pesos de documentos depois de normalização , produto: produto do peso final da consulta e peso final do documento

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

 $1/1.92\approx0.52$

 $1.3/1.92\approx0.68\,$

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra		consulta					docume	produto		
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
melhor	1	1	50000	1.3	1.3	0	0	0	0	0
carro	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
seguro	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Consulta: "melhor seguro carro". Documento: "carro seguro auto seguro".

palavra	consulta					documento				produto
	tf	tf-com-peso	df	idf	peso	tf	tf-com-peso	peso	norm.	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
melhor	1	1	50000	1.3	1.3	0	0	0	0	0
carro	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
seguro	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Colunas: tf: (sem peso) frequência de termo , tf-com-peso: log frequência de termo , df: frequência de documento , idf: frequência de documento inversa, peso: o peso final do termo na consulta ou documento, norm.: pesos de documentos depois de normalização , produto: produto do peso final da consulta e peso final do documento

Resultado final de similaridade entre consulta e documento:

$$\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$$

Computando a pontuação cosseno

```
PontuacaoCosseno(q)
     float Pontuacao[N] = 0 // pontuacao de cada documento
     float Tamanho[N] // tamanho de cada documento
    for each termo consulta t
     do calcular w_{t,a} e obter lista de referências para t
 5
        for each par(d, tf_{t,d}) na lista de referências
        do Pontuação [d] + = w_{t,d} \times w_{t,q}
     for each d
 8
     do // normalização
        Pontuacao[d] = Pontuacao[d] / Tamanho[d]
 9
10
     return Top K componentes da Pontuacao[]
```

▶ Representar a consulta como um vetor tf-idf com pesos

- ▶ Representar a consulta como um vetor tf-idf com pesos
- ▶ Representar cada documento como um vetor tf-idf com pesos

- Representar a consulta como um vetor tf-idf com pesos
- Representar cada documento como um vetor tf-idf com pesos
- Calcular a similaridade coseno entre o vetor consulta e vetor documento

- ▶ Representar a consulta como um vetor tf-idf com pesos
- ► Representar cada documento como um vetor tf-idf com pesos
- Calcular a similaridade coseno entre o vetor consulta e vetor documento
- Rankear documentos em relação à consulta

- ▶ Representar a consulta como um vetor tf-idf com pesos
- Representar cada documento como um vetor tf-idf com pesos
- Calcular a similaridade coseno entre o vetor consulta e vetor documento
- ► Rankear documentos em relação à consulta
- Exibir os K melhores resultados (e.g., K=10) ao usuário