Introdução à Chave Pública

- ► Troca de chaves Diffie-Hellman
- ► Grupos finitos
- Grupos cíclicos

Troca de Chaves de Diffie-Hellman

- Parâmetros públicos p, α
- ► Alice:
 - 1 Sorteia $a = K_{prA} \in \{2, 3, \dots, p-2\}$
 - 3 Envia para Bob $A = \alpha^a \mod p$
 - 5 Calcular $K_{AB} = B^a \mod p$
- Bob:
 - 2 Sorteia $b = K_{prB} \in \{2, 3, ..., p 2\}$
 - 4 Envia para Alice $B = \alpha^b \mod p$
 - 5 Calcular $K_{BA} = K_{AB} = A^b \mod p$
- ▶ Depois da troca de chaves, usar K_{AB} como chave secreta (simétrica) no AES!

Explicando Diffie-Hellman

- Como escolher primo p?
- ▶ Como escolher inteiro α ?
- Como o uso desses parâmetros garante a segurança?

Ideias gerais

- Garantia é dada por álgebra em grupos de números inteiros
- Grupos cíclicos permitem avaliar, controlar e garantir nível de segurança
- Temos técnicas baseadas em teoremas de grupos finitos cíclicos que permitem construir grupos em que as operações de troca de chave de Diffie-Hellman são seguras
 - Problema do log discreto
 - Problema das curvas elípticas
- Operações de D-H são seguras porque constituem uma função de 1 via
 - ▶ Ida é barata (computar chave pública) = exponenciação
 - ▶ Volta é cara (descobrir parâmetro privado) = log discreto

Álgebra de grupo e subgrupos finitos e cíclicos

- **▶** Grupo (*G*, ∘):
 - ▶ 4 propriedades obrigatórias: $a \circ b \in G$, $a \circ (b \circ c) = (a \circ b) \circ c$, $1 \circ a = a$, $a^{-1} \circ a = 1$
 - ▶ 1 propriedade para grupo abeliano: $a \circ b = b \circ a$
- Exemplos de grupos
 - Grupo aditivo: $(\mathbb{Z}, +)$,
 - Grupos multiplicativo: (\mathbb{C},\cdot)

Criado um grupo finito

- ▶ Vejamos (\mathbb{Z}_n , × mod n).
- Exemplo
 - $\mathbb{Z}_9 = 0, 1, 2, 3, 4, 5, 6, 7, 8$
 - ▶ Mas existe inversa somente quando $i \in \mathbb{Z}_9$ tem mdc(9,i) = 1
 - ▶ Então (\mathbb{Z}_n , × mod n) NÃO é um grupo

Grupo especial $(\mathbb{Z}_n^*, \times \mod n)$

- ▶ Grupo multiplicativo (\mathbb{Z}_n^* , × mod n)
 - ► Serve como base para construir um grupo "seguro" que exponenciação é rápida e log é lento
 - ▶ \mathbb{Z}_n^* é conjunto de inteiros $1 \le i \le n-1$ coprimos de n
 - ▶ Se mdc(i, n) = 1, então i é coprimo de n
 - ▶ Contém somente número com inversa (ao contrário de \mathbb{Z}_n)
 - ▶ Propriedade: ordem ou cardinalidade é $|\mathbb{Z}_n^*| = \Phi(n)$
 - ▶ Exercício: $|\mathbb{Z}_1^*6| = ?$
 - ▶ Exercício: qual é o n tal que $|\mathbb{Z}_n^*| = 8$?
 - Exercício: fazer um programa que, para um dado $\Phi(n)$, encontre n.

Exemplo: grupo especial $(\mathbb{Z}_9^*, \times \mod 9)$

$$\mathbb{Z}_n^* = \{1, 2, 4, 5, 7, 8\}$$

Exercício: prencher

\times mod 9	1	2	4	5	7	8
1						
2						
4						
5						
7						
8						

Operação de exponenciação

- ▶ Dado $(\mathbb{Z}_n^*, \times \mod n)$, elementos do grupo estão de alguma forma ligados entre si quando fazemos exponenciação por causa da operação $\mod n$
- Exemplo
 - ▶ \mathbb{Z}_{11}^* e um elemento $a = 3 \in \mathbb{Z}_{11}^*$
 - ▶ Potências mod 11:
 - $\{1,3,9,5,4,1,3,\ldots\}$... um ciclo!
- ▶ Exercício: obter ciclo para \mathbb{Z}_{11}^* e um elemento a=2

Ordem de um elemento

- ▶ Seja $(\mathbb{Z}_n^*, \circ = \times \mod n)$
- ▶ Ordem de a é ord(a) é o menor inteiro k que forma um ciclo
 - $ightharpoonup a^k = a \circ a \circ \ldots \circ a = 1 \mod n$
- Se grupo tem N elementos e ord(a) = N então a ordem de a é máxima e a é chamado de primitivo ou gerador
 - ▶ 2 é gerador de \mathbb{Z}_n^*
- Exercício: escrever algoritmo para encontrar a ordem de um elemento a para \mathbb{Z}_p^* , dados $a \in p$.

Grupo cíclico

- Um grupo cíclico é um grupo que tem pelo menos 1 elemento com ordem máxima
- Exemplo:
 - Se 2 é gerador de \mathbb{Z}_n^* então para qualquer elemento a em \mathbb{Z}_n^* existe um i tal que $2^i = a \mod n$
- Grupos cíclicos são a base de sistemas de criptografia assimétrica!

Se n é primo, então \mathbb{Z}_n^* é grupo finito cíclico abeliano!

Propriedade importante 1: só existem elementos com ord que divide |G|

- ▶ Se $a \in G$, G é grupo cíclico
 - 1. $a^{|G|} = 1$
 - 2. ord(a) divide |G| (resto zero)
- ► Comentário: se existem elementos de diferentes ordens em G então, essas propriedades indicam a possibilidade de seleção de um subgrupo com todos os elementos com ordem máxima (todas as ordem são iguais exceto para o elemento 1)
- Exercício: $|\mathbb{Z}_{11}^*| = 10$, quais são as possíveis ordens de elementos?

Propriedade importante 2: número de elementos primitivos

- ► Se *G* é grupo finito cíclico, então
 - 1. número de geradores α é $\Phi(|G|)$

```
► Exemplo: em \mathbb{Z}_{11}^*

H_1 = \{1\}, \ \alpha = 1

H_2 = \{1, 10\}, \ \alpha = 10

H_3 = \{1, 3, 4, 5, 9\}, \ \alpha = 3, 4, 5, 9\}
```

- ▶ Exercício: escrever algoritmo que recebe $p_1, e_1, p_2, e_2 \dots$ de $\mathbb{Z}_{p_1^{e_1} \times p_2^{e_2} \times \dots}^{e_2}$ e encontra seus subgrupos cíclicos
- 2. Se |G| for primo, então todos elementos exceto 1 são geradores, ou seja, existem |G|-1 elementos primitivos
- Importante usar grupos com ordem igual a um número primo para garantir que são cíclicos e elementos são todos geradores e é difícil obter x tal que $\alpha^x = \beta \mod n$ para α e β conhecidos!
- ► Se é difícil usar grupo com ordem prima, usar grupo com poucos subgrupos de alta ordem prima

Como escolher um bom grupo cíclico de maneira fácil?

- ▶ Se (G, \circ) é cíclico, então $a \in G$ com ord(a) = k, então a é gerador de algum subgrupo cíclico com k elementos!!
- ► Indica que podemos criar subgrupos com (quase) todos elementos geradores facilmente!
- Exemplo:
 - Exercício: verificar propriedade no grupo \mathbb{Z}_{11}^* e subgrupo de $a=3,\ ord(3)=5$
- ► Teorema de Lagrange: se H é subgrupo de G, então |H| divide |G|
 - $|\mathbb{Z}_{11}^*| = 10 = 1 \cdot 2 \cdot 5$, ou seja, temos H_1 , H_2 , e H_3 .
 - Exercício: mostrar esses subgrupos

Construção de (sub)grupos de ordem prima. Finalmente!

- ▶ Sejam G cíclico de ordem |G| = n e um α gerador de G
- ▶ Para todo k que divide n, existe exatamente um subgrupo cíclico H, |H| = k.

H é construído (gerado) a partir do elemento $\alpha^{n/k}$!

- Exemplo:
 - ▶ Temos $\alpha = 8$, \mathbb{Z}_{11}^* e queremos um gerador para subgrupo de ordem 2:
 - $\alpha^{n/k} = 8^{10/2} = 8^5 \equiv 10 \mod 11$
 - então 10 vai gerar subgrupo com 2 elementos
 - ► Exercício: encontrar esses elementos