
2.4. DS WITH OUR OWN LIBRARIES c� Steven, Felix, Suhendry

Exercise 2.4.1.1: If the Adjacency Matrix (AM) of a (simple) graph has the property that
it is equal to its transpose, what does this imply?

Exercise 2.4.1.2*: Given a (simple) graph represented by an AM, perform the following
tasks in the most efficient manner. Once you have figured out how to do this for AM, perform
the same task with Adjacency List (AL) and then Edge List (EL).

1. Count the number of vertices V and directed edges E (assume that a bidirectional
edge is equivalent to two directed edges) of the graph.

2*. Count the in-degree and the out-degree of a certain vertex v.

3*. Transpose the graph (reverse the direction of each edge).

4*. Create the complement of the graph.

5*. Check if the graph is a complete graph Kn. Note: A complete graph is a simple
undirected graph in which every pair of distinct vertices is connected by a single edge.

6*. Check if the graph is a tree (a connected undirected graph with E = V − 1 edges).

7*. Check if the graph is a star graph Sk. Note: A star graph Sk is a complete bipartite
K1,k graph. It is a tree with only one internal vertex and k leaves.

8*. Delete a certain edge (u, v) from the graph.

9*. Update the weight of a certain edge (u, v) of the graph from w to w0.

Exercise 2.4.1.3*: Create the Adjacency Matrix, Adjacency List, and Edge List represen-
tations of the graphs shown in Figure 4.1 (Section 4.2.2) and in Figure 4.8 (Section 4.2.10).
Hint: Use the graph data structure visualization in VisuAlgo.

Exercise 2.4.1.4*: Given a (simple) graph in one representation (AM, AL, or EL), convert
it into another graph representation in the most efficient way possible! There are 6 possible
conversions here: AM to AL, AM to EL, AL to AM, AL to EL, EL to AM, and EL to AL.

Exercise 2.4.1.5*: Research other possible methods of representing graphs other than the
ones discussed in this section, especially for storing special graphs!

Exercise 2.4.1.6*: In this section, we assume that the neighbors of a vertex are listed in
increasing vertex number for Adjacency List (as Adjacency Matrix somewhat enforces such
ordering and there is no notion of neighbors of a vertex in Edge List). What if the neighbors
are not listed in increasing vertex number in the input but we prefer them to be in sorted
order in our computation? What is your best implementation?

Exercise 2.4.1.7*: Follow up question, is it a good idea to always store vertex numbers in
increasing order inside the Adjacency List?

Exercise 2.4.1.8*: Think of a situation/problem where using two (or more) graph data
structures at the same time for the same graph can be useful!

98


