Aula 11 – 3 Estudo Dirigido – Programação Seleção

Exemplos de programação sequencial

Calculo de média de notas de um aluno	Calculo das raízes reais de eq do segundo grau		
#include <iostream></iostream>	#include <iostream></iostream>		
	#include <math.h></math.h>		
using namespace std;			
	using namespace std;		
int main()			
{	int main()		
char nome[30];	{ float A, B, C;		
float P1, P2, P3;	float DELTA, X1, X2;		
float media;	cout << "Calculo das raizes reais de uma equacao"		
cout << "Calculo de media de notas de um aluno." << endl;	<< " do segundo grau - AX2 + BX + c = 0." << endl;		
cout << "Digite o nome do aluno: ";	// exemplo: X2 - 5*X +6 = 0 X1 = 2 X2 = 3		
cin.getline(nome, 30);	cout << "Digite o valor de A: ";		
cout << "Digite a nota 1 do aluno: ";	cin >> A;		
cin >> P1;	cout << "Digite o valor de B: ";		
cout << "Digite a nota 2 do aluno: ";	cin >> B;		
cin >> P2;	cout << "Digite o valor de C: ";		
cout << "Digite a nota 3 do aluno: ";	cin >> C;		
cin >> P3;	DELTA = B*B - 4*A*C;		
media = (P1 + P2 + P3)/3;			
cout << "A media de notas do aluno " << nome	X1 = (-B + sqrt(DELTA))/2*A;		
<< " eh: " << media << endl;	X2 = (-B - sqrt(DELTA))/2*A;		
If(media < 6) cout << "aluno reprovado" << endl;			
Else cout << "aluno aprovado" << endl;	cout << "As raizes sao: X1 = "		
	<< X1 << " e X2 = " << X2 << endl;		
return 0;			
}	return 0;		
	}		

Atividade avaliativa

Desenvolva o programa abaixo baseado na norma técnica de identificação de capacidade de condicionadores de ar em um ambiente.

Olhar exemplo: http://springer.com.br/dimensionador/

Norma técnica para dimensionamento de condicionadores de ar

Para calcular a potência de aparelhos de ar condicionado deve-se proceder da seguinte forma:

```
Sabendo-se que CT = a + b + c + d + e,
Onde: CT = carga térmica (Kcal/h)
```

As parcelas são relacionadas a:

a = volume do recinto (Kcal/hm3)

b = área das janelas (Kcal/hm2)

 $c = n^0$ de pessoas (Kcal/hpessoa)

d = área das portas (Kcal/hm2)

e = aparelhos eletrodomésticos (Kcal/hwatt)

Calculamos:

a) Determinação do volume do local e multiplicação deste valor pela quantidade de Kcal/h para cada m3 indicado na tabela a seguir:

Tabela 3.2 - Recinto

Recinto (Kcal/hm³)			
Entre andares	Sob telhados		
16,0	22,33		

b) Determinação da área das janelas pela soma da área de todas as janelas situadas na mesma parede. Deve-se verificar existência de cortinas e qual o período de incidência do sol (manhã ou tarde). Este valor deve ser multiplicado pela quantidade de kcal/h por m2 de janela nas condições observadas, que encontra-se na tabela seguinte:

Tabela 3.3 - Janelas

Janelas (Kcal/hm²)					
Com	ortina	Sem cortina		Vidros na	
Sol da manha	Sol da tarde	Sol da manha	Sol da tarde	sombra	
160	212	222	410	37	

Obs: Se houver janelas em mais de uma parede, considerar aquela da parede que recebe mais calor para o cálculo acima. As janelas das outras paredes devem ser consideradas na sombra.

- c) Verificação do número de pessoas que habitualmente permaneçam no local e multiplicação desse número pelo fator de 125Kcal/(h.pessoa).
- d) Some as áreas das portas, arcos ou vão que permaneçam constantemente abertos para espaços não condicionados e multiplique este valor pelo fator 125Kcal/(h.m2). Se as portas permanecerem fechadas multiplique este valor pelo fator 60Kcal/(h.m2).
- e) Quando houver aparelhos elétricos em uso no ambiente que desprendam calor, tais como: esterilizador, estufa, cafeteira, lâmpada, etc, considerar um fator de 0,9kcal/(h.watt) multiplicando a potência total do aparelho.

Definições para construção do programa do calculo de dimensionamento do condicionados de ar:

- Volume do recinto (Kcal/hm3) Ler a largura, o comprimento e a altura do ambiente e calcular o volume (largura*comprimento*altura) considerando entre andares;
- Área das janelas (Kcal/hm2) ler a quantidade de janelas no ambiente e considerar 2 m2 (1m*2m) para cada janela, com cortina e incidência de sol da tarde;
- Número de pessoas (Kcal/hpessoa) ler o número de pessoas que fregüentam o ambiente;
- Área das portas (Kcal/hm2) ler a quantidade de portas no ambiente considerando 1.6 (2m*0.8m) por porta, onde ficam a maioria do tempo fechadas;
- Aparelhos eletrodomésticos (Kcal/hwatt) ler o numero de equipamentos eletroeletrônicos (TV, computador, lâmpadas ...) e considerar que a potência média destes equipamentos é de 80 watts.

A fórmula final fica:

CT = (largura*comprimento*altura) * 16.00 + janelas * 2 * 212 + pessoas * 125 + portas * 1.6 * 60 + aparelhos * 80 * 0.9

Apresentar o valor calculado para carga térmica (CT).

Consultando a tabela seguinte, procura-se o aparelho mais conveniente de acordo com a carga térmica total do local a ser condicionado:

Tabela 3.4 – Potências nominais de condicionadores de ar tipo janela

BTU/h	kcal/h	W	VA
8.500	2.125	1.300	1.500
10.000	2.500	1.400	1.650
12.000	3.000	1.600	1.900
14.000	3.500	1.900	2.100
18.000	4.500	2.600	2.860
21.000	5.250	2.800	3.080
30.000	7.500	3.600	4.000

(*) Conforme ND-5.1:1998, Capítulo 7, pg. 8

Obsevação: o programa deve considerar:

- 1. a possibilidade da escolha (1- se a sala está entre andares ou 2- telhado);
- 2. consultar a tabela para escrever na tela qual o (carga térmica btus) aparelho mais conveniente;