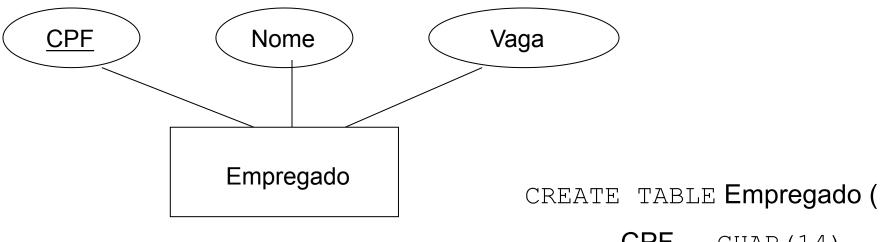
Aula 7 – SBD ER para Relacional

Profa. Elaine Faria UFU - 2018

Introdução

- Modelo ER
 - Conveniente para representar um projeto de BD inicial de alto nível
- Modelo Relacional
 - Pode ser usado para suportar a implementação de aplicações
 - É necessário que exista um SGBD que se apóie no modelo relacional: um SGBDR
- Dado um DER é adotada uma estratégia padrão para gerar um esquema de BD relacional


Introdução

Como transformar um diagrama ER para um esquema de Banco de Dados Relacional?

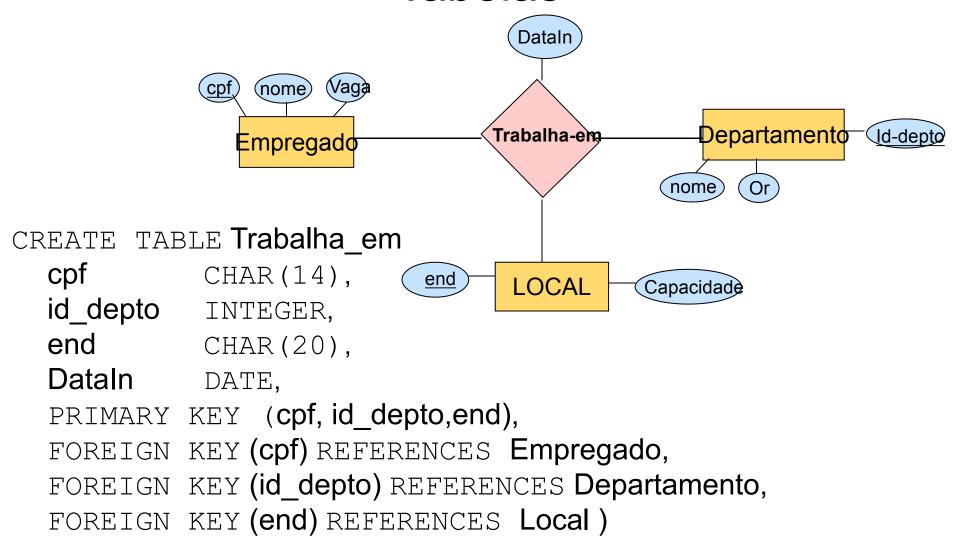
Tipo de Entidade para Tabelas

- Um tipo de entidade é mapeado em uma tabela (relação)
 - Cada atributo do tipo de entidade torna-se um atributo da tabela
 - O domínio de cada atributo e a chave primária são conhecidos

Tipo de Entidade para Tabelas

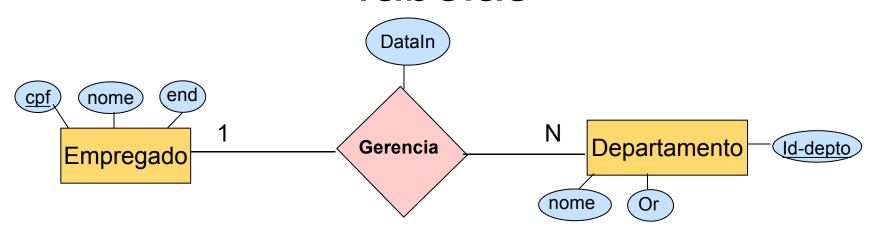
CPF	Nome	Vaga
111.111.111-11	João	48
222.222.222.22	Maria	33
333.333.333-33	Pedro	22

CPF CHAR (14),


Nome CHAR (30),

Vaga INTEGER,

PRIMARY KEY (CPF))


Tipo de relacionamento → tabela

- Os atributos incluem
 - Atributos chave primária de cada tipo de entidade participantes -> chave estrangeira
 - Atributos descritivos do conjunto de relacionamentos
- O conjunto de atributos não descritivos é uma chave candidata para a tabela


```
End
        nome
      Empregado
                subordinado
supervisor
                  CREATE TABLE Report a (
                     supervisor cpf CHAR (14),
                     subordinado cpf CHAR (14),
       Reporta_a
                     PRIMARY KEY (supervisor cpf, subordinado_cpf),
                     FOREIGN KEY (supervisor_cpf) REFERENCES
                                               Empregado (cpf),
                     FOREIGN KEY (subordinado cpf) REFERENCES
                                        Empregado (cpf))
```

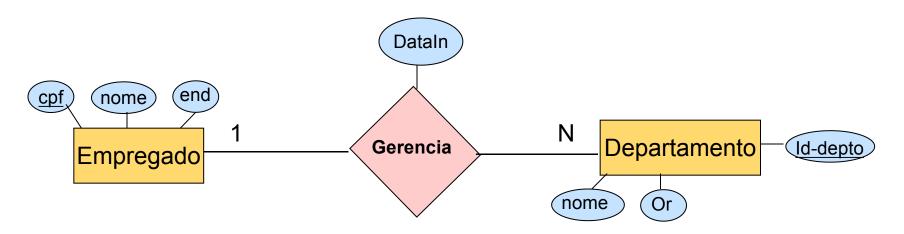
- Primeira estratégia
 - Identificar a tabela S que representa o lado N do tipo de relacionamento
 - Incluir como chave estrangeira em S, a chave primária da tabela T que representa o lado 1 do tipo de relacionamento
 - Inconveniente
 - Ex: espaço desperdiçado
 - Campos preenchidos com o valor null


```
CREATE TABLE Departamento(
```

```
id depto INTEGER,
```

nome CHAR (20),

Or REAL,


cpf CHAR (14),

Datain DATE,

PRIMARY KEY (id_depto),

FOREIGN KEY (cpf) REFERENCES Empregado)

- Segunda estratégia
 - Criar uma tabela separada R cujos atributos são chaves primárias de S e T
 - Chaves estrangeiras
 - Definir a chave primária de R igual à chave primárias de S


```
CREATE TABLE Gerencia(

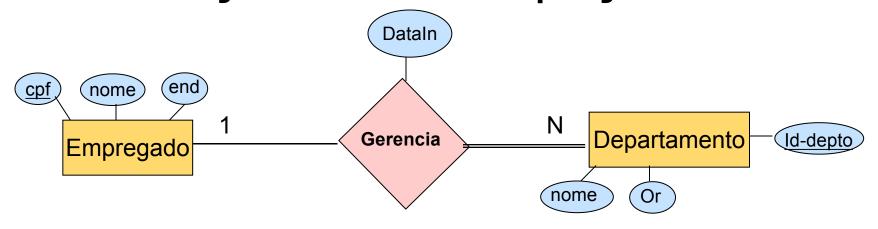
cpf CHAR (14),

id_depto INTEGER,

DataIn DATE,

PRIMARY KEY (id_depto),

FOREIGN KEY (cpf) REFERENCES Empregado,


FOREIGN KEY (id_depto) REFERENCES Departamento)
```

Tipo de Relacionamento 1:N com Restrição de Participação Total

- Restrição "Todo departamento deve ter um gerente" → usar 1ª estratégia
 - não pode ser capturada usando-se a 2^a estratégia

Relacionamentos 1:N com restrição de participação total → 1ª estratégia

Tipo de Relacionamento 1:N com Restrição de Participação Total


```
CREATE TABLE Departamento(
```

```
id_depto INTEGER,
nome CHAR (20),
```

Or REAL,

cpf CHAR (14) not null,

Dataln DATE not null,

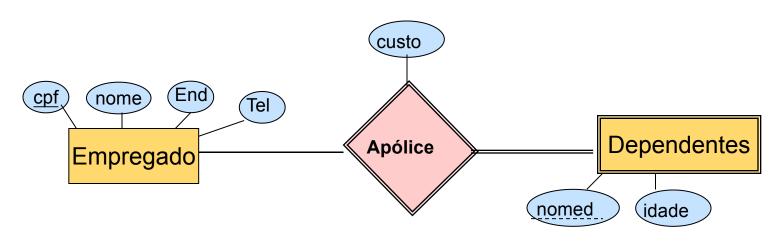
PRIMARY KEY (id_depto),

FOREIGN KEY (cpf) REFERENCES Empregado)

Restrição de Participação Total

 Como garantir a participação Total de Departamentos em Trabalha_em?

Uso de Asserções em SQL (programas específicos)


Tipo de Entidade Fraca

- Um tipo de entidade fraca sempre
 - Participa de um relacionamento binário, 1:N e tem participação total

Passos

- Entidade fraca F com tipo de entidade proprietária E → tabela R
 - Todos os atributos simples de F
 - Chave estrangeira de R: atributos de chave primária de E
 - Chave primária de R: chave primária de E e chave parcial de F

Tipo de Entidade Fraca

CREATE TABLE Apolice Dependente (

nomed CHAR (20),

idade INTEGER,

custo REAL,

cpf CHAR (14) NOT NULL,

PRIMARY KEY (nomed, cpf),

FOREIGN KEY (cpf) REFERENCES Empregado ON DELETE CASCADE)

Superclasse C {ch, $a_1,...,a_n$ } e m subclasses {S₁,S₂,...,S_m}

- Múltiplas Tabelas
 - Criar uma tabela L para C
 - Criar uma tabela L_i para cada subclasse S_i com Atr(L_i)
 = {ch} U {atributos de S_i}

Ideal para qualquer especialização: total ou parcial, disjunta ou sobreposta

Superclasse C {ch, $a_1,...,a_n$ } e m subclasses {S₁,S₂,...,S_m}

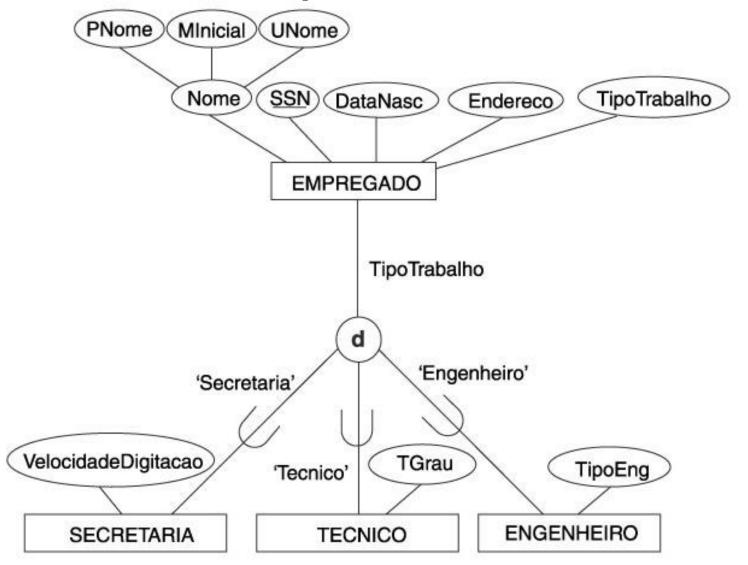
- Múltiplas Tabelas somente subclasse
 - Criar uma tabela L_i para cada subclasse S_i com Atr(L_i)
 = {atributos de S_i} U {ch, a₁,..., a_n}

Só funciona para especialização cujas subclasses são totais

Recomendada se houver restrição de disjunção

Superclasse C {ch, $a_1,...,a_n$ } e m subclasses {S₁,S₂,...,S_m}

- Tabela única com um atributo tipo
 - Criar uma única tabela L com Atr(L) = {ch, a₁,..., a_n} U
 {atributos de S_i} U ... U {atributos de S_m} U {t}
 - T é o atributo Tipo → indica a subclasse


Só funciona para especialização cujas subclasses são disjuntas

Problema: gera muitos valores null

Superclasse C {ch, $a_1,...,a_n$ } e m subclasses {S₁,S₂,...,S_m}

- Relação isolada com atributos de múltiplos tipos
 - Crie uma única tabela L com Atr(L) = {ch, $a_1,..., a_n$ } U {atributos de S_i } U ... U {atributos de S_m } U { $t_1,t_2,...,t_m$ }
 - − T_i atributo do tipo booleano → pertence a S_i ou não

Usado para especialização cujas classes são sobrepostas

Empregado

CPF → chave P

PNome

Minicial

Unome

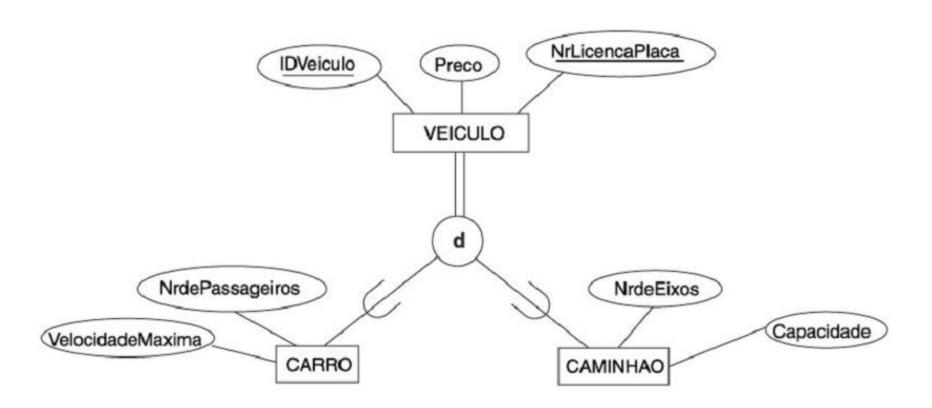
DataNasc

Endereco

TipoTrabalho

Secretaria

CPF → chave primária/estrangeira VelocidadeDigitacao


Tecnico

CPF → chave primária/estrangeira

TGrau

Engenheiro

CPF → chave primária/estrangeira TipoEng

Carro

id veiculo → Chave P

Placa

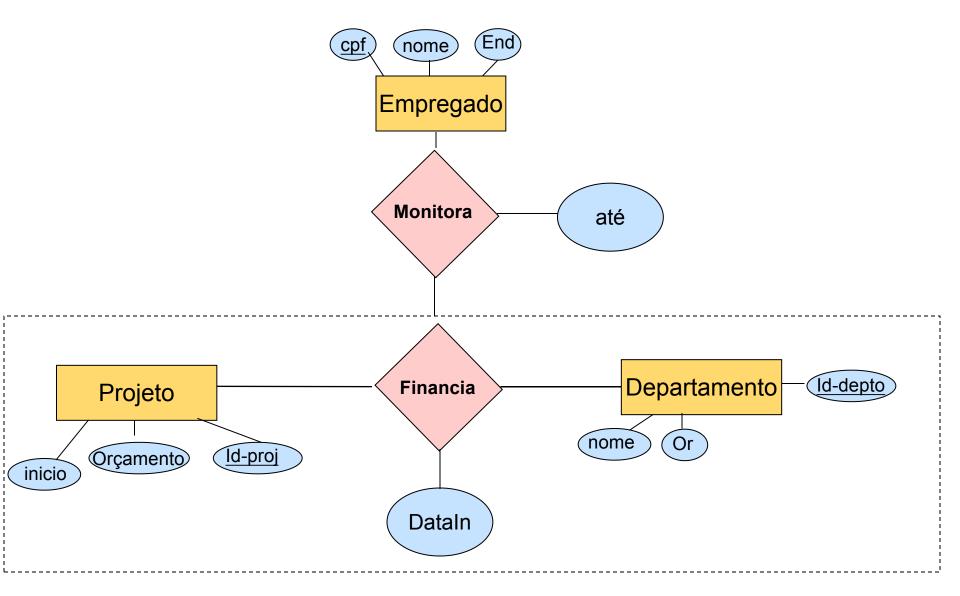
Preco

Veloc Max

NroPass

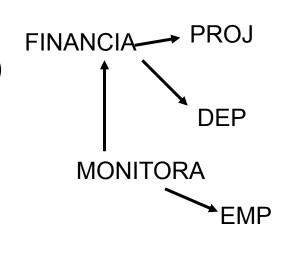
Caminhao

id_veiculo → Chave P


Placa

Preco

Nro Eixos


Capacidade_Peso

Diagramas ER com Agregação

Diagramas ER com Agregação

- Mapear os conjuntos de entidades Projeto,
 Empregado e Departamento para Tabelas
- Mapear o conjunto de relacionamentos Financia
 - id_depto, id_proj e DataIn
 - Pode-se criar uma nova chave para a tabela. Ex: ID_Financia
- Para monitora, cria-se uma tabela contendo
 - Os atributos chave de Empregado (cpf)
 - Os atributos chave de financia (id_depto e id_proj)
 - Os atributos descritivos de Monitora (até)

Referências

- R. Elmasri e S. B. Navathe, Sistema de Banco de Dados, 6ª edição, Pearson, 2011.
- R. Ramakrishnan e J. Gehrke, *Database Management Systems*, 3a Edição, McGraw-Hill, 2003.
- Slides da Profa. Sandra de Amo FACOM -UFU