Clustering 000000000 Clustering Time Series

References

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Clustering from Data Streams

João Gama LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 Clustering

- Micro Clustering
- Olustering Time Series
 - Growing the Structure
 - Adapting to Change
 - Properties of ODAC

4 References

Clustering 000000000 Clustering Time Series

References

Outline

- 2 ClusteringMicro Clustering
- 3 Clustering Time Series
 - Growing the Structure
 - Adapting to Change
 - Properties of ODAC

4 References

Clustering 000000000 Clustering Time Series

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Clustering

What is cluster analysis?

- Grouping a set of data objects into a set of clusters,
- the intra-cluster similarity is high and
- the inter-cluster similarity is low
- The quality of a clustering result depends on both the similarity measure used
- The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

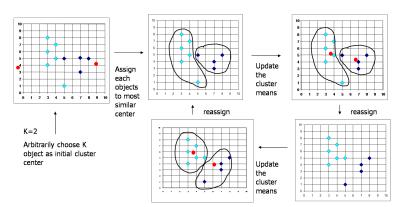
Clustering 000000000

Clustering Time Series

References

Illustrative Example: K-means

MacQueen 67: Each cluster is represented by the center of the cluster $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$



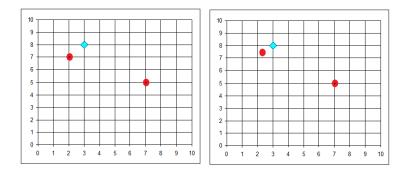
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Clustering 000000000

Clustering Time Series

References

K-Means for Streaming Data

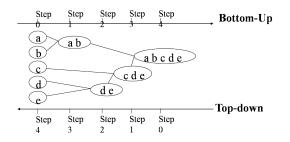


References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Illustrative Example: Hierarchical Clustering

- Bottom-Up
 - Initial State: Each object is a group.
 - Iteratively join two groups in a single one.
- Top-Down
 - Initial State: Single Group with all the objects.
 - Iteratively divide each group into two groups.



Clustering 000000000 Clustering Time Series

References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Major Clustering Approaches

- **Partitioning algorithms**: Construct various partitions and then evaluate them by some criterion
 - E.g., k-means, k-medoids, etc.
- **Hierarchy algorithms**: Create a hierarchical decomposition of the set of data (or objects) using some criterion.
 - $\bullet\,$ Often needs to integrate with other clustering methods, e.g., BIRCH
- Density-based: based on connectivity and density functions
 - Finding clusters of arbitrary shapes, e.g., DBSCAN, OPTICS, etc.
- Grid-based: based on a multiple-level granularity structure
 - View space as grid structures, e.g., STING, CLIQUE
- **Model-based**: find the best fit of the model to all the clusters
 - Good for conceptual clustering, e.g., COBWEB, SOM

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Learning Algorithms: Desirable Properties

• Processing each example:

- Small constant time
- Fixed amount of main memory
- Single scan of the data
- Without (or reduced) revisit old records.
- Processing examples at the speed they arrive
- Decision Models at anytime
- Ideally, produce a model equivalent to the one that would be obtained by a batch data-mining algorithm
- Ability to detect and react to concept drift

Clustering 000000000 Clustering Time Series

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clustering Data Streams

- New requirements in stream clustering
 - Generate high-quality clusters in one scan
 - High quality, efficient incremental clustering
 - Analysis should take care of multi-dimensional space
 - Analysis for different time granularity
 - Tracking the evolution of clusters
- Clustering: A stream data reduction technique

Clustering

Clustering Time Series

References

Outline

2 Clustering• Micro Clustering

3 Clustering Time Series

- Growing the Structure
- Adapting to Change
- Properties of ODAC

4 References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Clustering •00000000 Clustering Time Series

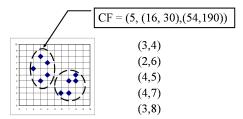
References

Cluster Feature Vector

Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny 1996

Cluster Feature Vector: CF = (N, LS, SS)

- N: Number of data points
- $LS: \sum_{i=1}^{N} \vec{x_i}$
- $SS: \sum_{1}^{N} (\vec{x_i})^2$



Constant space irrespective to the number of examples!

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Micro clusters

The sufficient statistics of a cluster A are $CF_A = (N, LS, SS)$.

- N, the number of data objects,
- LS, the linear sum of the data objects,
- SS, the sum of squared the data objects.

Properties:

- Centroid = LS/N
- Radius = $\sqrt{SS/N (LS/N)^2}$

• Diameter =
$$\sqrt{\frac{2 \times N * SS - 2 \times LS^2}{N \times (N-1)}}$$

Clustering 00000000 Clustering Time Series

References

Micro clusters

Given the sufficient statistics of a cluster A, $CF_A = (N_A, LS_A, SS_A)$. Updates are:

- Incremental: a point x is added to the cluster: $LS_A \leftarrow LS_A + x$; $SS_A \leftarrow SS_A + x^2$; $N_A \leftarrow N_A + 1$
- Additive: merging clusters A and B: $LS_C \leftarrow LS_A + LS_B$; $SS_C \leftarrow SS_A + SS_B$; $N_C \leftarrow N_A + N_B$
- Subtractive: $CF(C_1 - C_2) = CF(C_1) - FV(C_2)$

CluStream

CluStream: A Framework for Clustering Evolving Data Streams (VLDB03)

- Divide the clustering process into online and offline components
 - Online: periodically stores summary statistics about the stream data
 - Micro-clustering: better quality than k-means
 - Incremental, online processing and maintenance
 - Offline: answers various user queries based on the stored summary statistics
 - Tilted time frame work: register dynamic changes
- With limited overhead to achieve high efficiency, scalability, quality of results and power of evolution/change detection

Clustering 000000000 Clustering Time Series

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CluStream: Online Phase

Inputs:

• Maximum micro-cluster diameter D_{max}

For each x in the stream:

- Find the nearest micro-cluster M_i
 - IF the diameter of $(M_i \cup x) < D_{max}$
 - THEN assign x to that micro-cluster $M_i \leftarrow M_i \cup x$
 - ELSE Start a new micro-cluster based on x

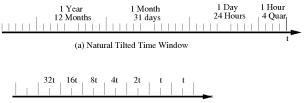
Clustering 000000000 Clustering Time Series

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Pyramidal Time Frame

- The micro-clusters are stored at snapshots.
- When should we make the snapshot?
- The snapshots follow a pyramidal pattern:



b) Logarithmic Tilted Time Window

Clustering 0000000000 Clustering Time Series

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Analysis

- find the cluster structure in the current window,
- find the cluster structure over time ranges with granularity confined by the specification of window size and boundary,
- put different weights on different windows to mine various kinds of weighted cluster structures,
- mine the evolution of cluster structures based on the changes of their occurrences in a sequence of windows

Clustering 00000000 Clustering Time Series

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Any Time Stream Clustering

Properties of anytime algorithms

- Deliver a model at any time
- Improve the model if more time is available
 - Model adaptation whenever an instance arrives
 - Model refinement whenever time permits

ClusTree [Kranen et al., 2011]

- an online component to learn micro-clusters
- Any variety of online components can be utilized
- Micro-clusters are subject to exponential aging

Clustering 00000000 Clustering Time Series

References

MOA

MOA Stream Clustering Visualization Frame	
Setup Visualization	
Resume Screenshot X Dim 1 Image: Points Image: Ground truth Stop Y Dim 2 Image: Microclustering Image: Clustering	Visualisation Speed Processed: 205000
Evaluation Values Values Pic Measure Current Ø FI 0,27 0,15 0,33 0 FI	
○ Precision 0,44 0,72 0.89 0,80 ○ Racal 0,35 0,62 0,37 0,19 0,40 0	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Clustering 000000000 Clustering Time Series

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

- 2 Clustering• Micro Clustering
- Olustering Time Series
 - Growing the Structure
 - Adapting to Change
 - Properties of ODAC

4 References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Clustering Time Series Data Streams

Goal: Continuously maintain a clustering structure from evolving time series data streams.

- Ability to Incorporate new Information;
- Process new Information at the rate it is available.
- Ability to Detect and React to *changes* in the Cluster's Structure.

Clustering of *variables* (sensors) not examples! The standard technique of transposing the working-matrix does not work: transpose is a blocking operator!

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Online Divisive-Agglomerative Clustering

Online Divisive-Agglomerative Clustering, Rodrigues & Gama, 2008 **Goal:** Continuously maintain a hierarchical cluster's structure from evolving time series data streams.

- Performs hierarchical clustering
- Continuously monitor the evolution of clusters' diameters
- Two Operators:
 - Splitting: expand the structure more data, more detailed clusters
 - Merge: contract the structure reacting to changes.
- Splitting and agglomerative criteria are supported by a confidence level given by the **Hoeffding bounds**.

Clustering 000000000 Clustering Time Series

References

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Main Algorithm

- ForEver
 - Read Next Example
 - For all the clusters
 - Update the sufficient statistics
 - Time to Time
 - Verify Merge Clusters
 - Verify Expand Cluster

References

Feeding ODAC

Each example is processed once.

Only sufficient statistics at leaves are updated.

Sufficient Statistics: a triangular matrix of the correlations between variables in a leaf.

Released when a leaf expands to a node.



 $C_1 = \{ x_2, x_3 \}, C_2 = \{ x_4, \dots, x_{m-1} \}, C_3 = \{ x_1, x_m \}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Clustering 000000000 Clustering Time Series

References

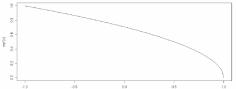
Similarity Distance

Distance between time Series: $rnomc(a, b) = \sqrt{\frac{1-corr(a,b)}{2}}$ where corr(a, b) is the Pearson Correlation coefficient:

$$corr(a, b) = \frac{r - \frac{n}{n}}{\sqrt{A_2 - \frac{A^2}{n}}\sqrt{B_2 - \frac{B^2}{n}}}$$

The *sufficient statistics* needed to compute the correlation are easily updated at each time step:

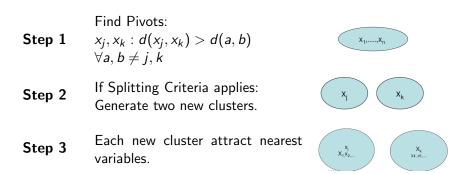
 $A = \sum a_i, \ B = \sum b_i, \ A_2 = \sum a_i^2, \ B_2 = \sum b_i^2, \ P = \sum a_i b_i$



Clustering 000000000 Clustering Time Series

References

The Expand Operator: Expanding a Leaf



Splitting Criteria

When should we expand a leaf? Let

- $d_1 = d(a, b)$ the farthest distance
- *d*₂ the second farthest distance

Question:

Is d_1 a stable option? what if we observe more examples?

Hoeffding bound:

Split if $d_1 - d_2 > \epsilon$ with $\epsilon = \sqrt{\frac{R^2 ln(1/\delta)}{2n}}$ where *R* is the range of the random variable; δ is a user confidence level, and *n* is the number of observed data points.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

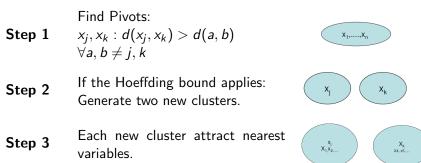
Hoeffding bound

- Suppose we have made *n* independent observations of a random variable *r* whose range is *R*.
- The Hoeffding bound states that:
 - With probability $1-\delta$
 - The true mean of r is in the range $\overline{r} \pm \epsilon$ where $\epsilon = \sqrt{\frac{R^2 ln(1/\delta)}{2n}}$
- Independent of the probability distribution generating the examples.

Clustering 000000000 Clustering Time Series

References

The Expand Operator: Expanding a Leaf

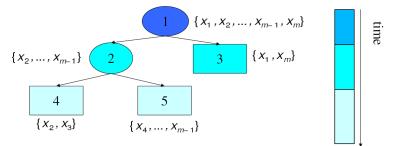


Clustering 000000000 Clustering Time Series

References

Multi-Time-Windows

A multi-window system: each node (and leaves) receive examples from different time-windows.



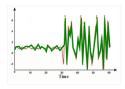
Clustering 000000000 Clustering Time Series

References

The Merge Operator: Change Detection

Time Series Concept Drift:

- Changes in the distribution generating the observations.
- Clustering Concept Drift
 - Changing in the way time series correlate with each other
 - Change in the cluster Structure.



Clustering 000000000 Clustering Time Series

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Merge Operator: Change Detection

The Splitting Criteria guarantees that cluster's diameters monotonically decrease.

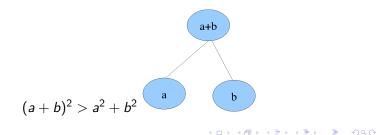
- Assume Clusters: c_i with descendants c_k and c_s .
- If diameter(c_k) − diameter(c_j) > ε OR diameter(c_s) − diameter(c_j) > ε
 - Change in the correlation structure!
 - Merge clusters c_k and c_s into c_j .

Clustering 000000000 Clustering Time Series

References

Properties of ODAC

- For stationary data the cluster's diameters monotonically decrease.
- **Constant update time/memory consumption** with respect to the number of examples!
- Every time a **split** is reported
 - the time to process the next example decreases, and
 - the **space** used by the new leaves is **less than** that used by the parent.



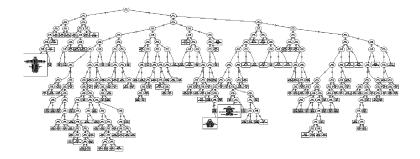
Clustering 000000000 Clustering Time Series

References

・ロト ・聞ト ・ヨト ・ヨト

ж

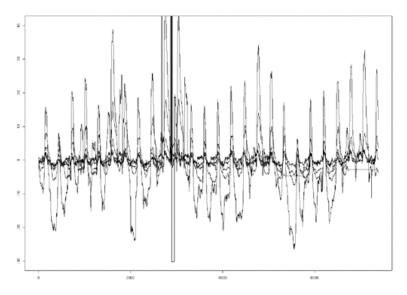
The Electrical Load Demand Problem



Clustering 000000000 Clustering Time Series

References

The Electrical Load Demand Problem



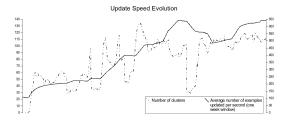
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Clustering 000000000

Clustering Time Series

References

Evolution of Processing Speed



Clustering 000000000

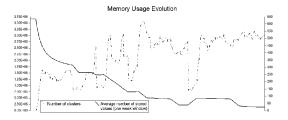
Clustering Time Series

References

・ロト ・聞ト ・ヨト ・ヨト

æ

Evolution of Memory Usage



Clustering 000000000 Clustering Time Series

References

Outline

Introduction

- 2 Clustering• Micro Clustering
- 3 Clustering Time Series
 - Growing the Structure
 - Adapting to Change
 - Properties of ODAC

4 References

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Master References

- J. Gama, *Knowledge Discovery from Data Streams*, CRC Press, 2010.
- S. Muthukrishnan Data Streams: Algorithms and Applications, Foundations & Trends in Theoretical Computer Science, 2005.
- C. Aggarwal (Ed) *Data Streams: Models and Algorithms*, Springer, 2007
- B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data Stream Systems, Proceedings of PODS, 2002.
- Gaber, M, M., Zaslavsky, A., and Krishnaswamy, S., *Mining Data Streams: A Review*, in ACM SIGMOD Record, Vol. 34, No. 1, 2005.
- J. Silva, E. Faria, R. Barros, E. Hruschka, A. Carvalho, J. Gama: Data stream clustering: A survey. ACM Comput. Surv. 46(1): 13 (2013)

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bibliography on Clustering

- P. Rodrigues, J. Gama and J. P. Pedroso. *Hierarchical Clustering of Time Series Data Streams*; TKDE, 2008.
- Zhang, Ramakrishnan, Livny; *Birch: Balanced Iterative Reducing and Clustering using Hierarchies*, SIGMOD 1996.
- Charu Aggarwal, Jiawei Han, J. Wang, P. S. Yu, A Framework for *Clustering Evolving Data Streams*, by VLDB 2003.
- G. Cormode, S. Muthukrishnan, and W. Zhuang, *Conquering the divide: Continuous clustering of distributed data streams.* ICDE 2007.
- Kranen, Assent, Baldauf, and Seidl; The ClusTree: indexing micro-clusters for anytime stream mining, Knowl. Inf. Syst. 29, 2 2011
- Cormode, Muthu, Zhuang; Conquering the Divide: Continuous Clustering of Distributed Data Streams. ICDE 2007
- P. Rodrigues, J. Gama: Clustering Distributed Sensor Data Streams. ECML/PKDD 2008
- P. Rodrigues, J. Gama: L2GClust: local-to-global clustering of stream sources. SAC 2011