Challenges in Ubiquitous Data Mining

João Gama

LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt

Motivation

2 Illustrative Example

• Very-short-term Forecasting in Photovoltaic Systems

3 Clustering Sensor Networks

- Motivation
- Distributed Grid Clustering
- Clustering Data Sources

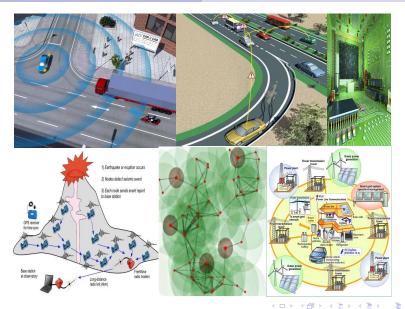
4 Final Comments

Image: A image: A

- ∢ ⊒ →

Motivation

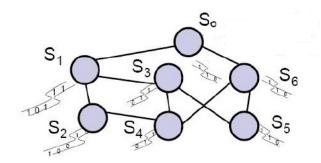
Illustrative Example Clustering Sensor Networks Final Comments



João Gama

Challenges in Ubiquitous Data Mining

Problem Formulation: Network Data Model



João Gama Challenges in Ubiquitous Data Mining

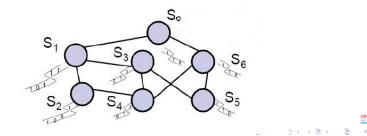
イロン イロン イヨン イヨン

Querying Model

Query = $Q(\bigcup_{i=0}^{n} S_i)$

- One-shot queries: What is the state of the network?
- Continuous queries:

Track and monitor the state of network at any time



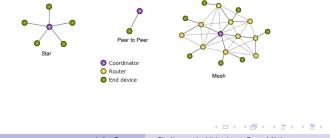
Network topologies

• Star Topology

arrange peers around a central hub (coordinator).

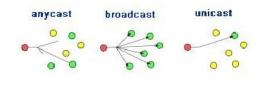
Mesh Network

every peer is connected to nearest peers. The main purpose is fault tolerance.



Routing schemes

- unicast: delivers a message to a single specific node;
- broadcast: delivers a message to all nodes in the network;
- **anycast:** delivers a message to a group of nodes, typically the ones nearest to the source.



< □ > < □ >

Limitations of existing techniques

- Machine learning so far has mostly centered on one-shot data analysis from homogeneous and stationary data, and on centralized algorithms.
- We are faced with tremendous amount of distributed data.
- In most cases, **this data is transient**, and may not be stored in permanent relations.
- The theory of machine learning relies on the assumption that the data points are independent and identically distributed,
- meaning that the underlying generative process is stationary.

< ロ > < 同 > < 回 > < 回 >

Requirements for Mining Sensor Data Streams

- Vertically distributed data
- Single pass: process each observation once;
- Small space: constant space;
- Small processing time;
- Reduced communications.
- Local Approaches:
 - Privacy and Security preserving
 - X Synchronization

João Gama Challenges in Ubiquitous Data Mining

・ 同 ト ・ ヨ ト ・ ヨ ト

The Demand for Learning

Requirements for adaptive smart devices:

- be able to sense their environment, receive data from other devices, and make sense of the gathered data.
- be able to adapt continuously to **changing environmental conditions** and evolving user habits and needs.
- be capable of predictive self-diagnosis.
- be **resource-aware** because of the real-time constraint and of limited computer, battery power and communication resources.

A B > A B >

Illustrative Example: Renewable Power Prediction

Analog Method for Collaborative very-short-term Forecasting of Power Generation from Photovoltaic Systems, V.Gomez, G. Hebrail, NGDM 2011

- EC recommendation: in 2020 the penetration of renewable energies should be 20%
- Renewable Power Prediction:

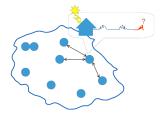
Predict the power produced by a photovoltaic panel for each quarter in a short-term time horizon.

(4 同) (4 日) (4 日)

Very-short-term Forecasting in Photovoltaic Systems

< 6 >

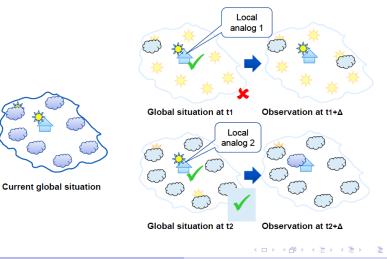
Collaborative Forecasting: Main Idea



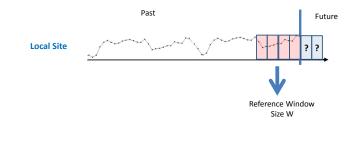
- **1** Local Step: Find past states nearest to current state;
- ② Collaboration: Broadcast time-stamps of past nearest states;
- **O Local Search:** Inferring the Global Context;
- **Prediction:** Using the global context.

Very-short-term Forecasting in Photovoltaic Systems

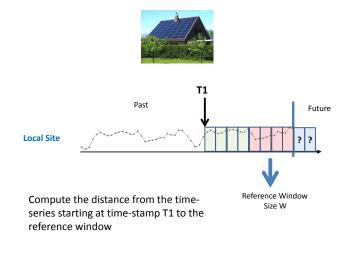
Collaboration



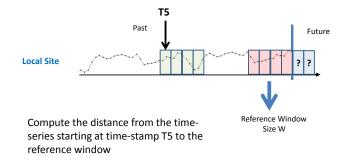
Very-short-term Forecasting in Photovoltaic Systems



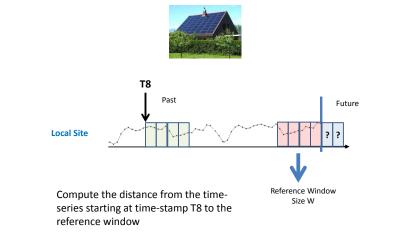
Very-short-term Forecasting in Photovoltaic Systems



Very-short-term Forecasting in Photovoltaic Systems

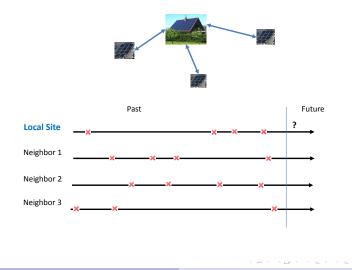


Very-short-term Forecasting in Photovoltaic Systems



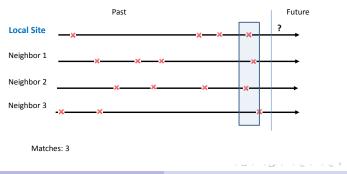
Very-short-term Forecasting in Photovoltaic Systems

Collaboration: broadcast time-stamps of similar contexts



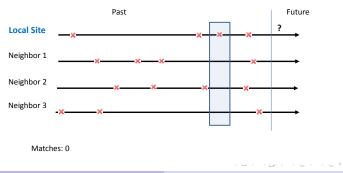
Very-short-term Forecasting in Photovoltaic Systems

Local search: Inferring the Global Context



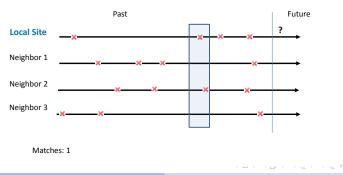
Very-short-term Forecasting in Photovoltaic Systems

Local search: Inferring the Global Context



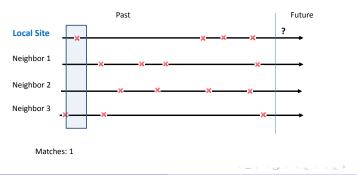
Very-short-term Forecasting in Photovoltaic Systems

Local search: Inferring the Global Context



Very-short-term Forecasting in Photovoltaic Systems

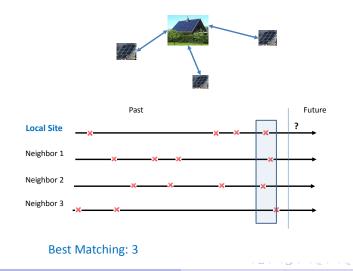
Local search: Inferring the Global Context



João Gama Challenges in Ubiquitous Data Mining

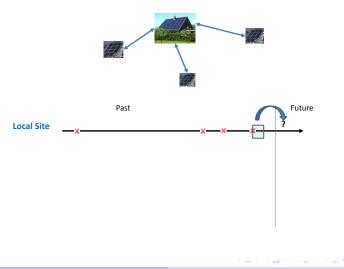
Very-short-term Forecasting in Photovoltaic Systems

The Global Context



Very-short-term Forecasting in Photovoltaic Systems

Prediction



Very-short-term Forecasting in Photovoltaic Systems

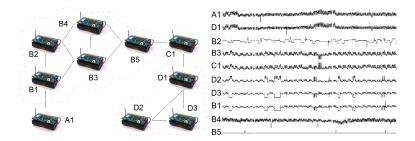
Lessons Learned

- Using local information to infer global context by *collaboration* with neighbors;
- Preserves privacy while collaborating with other systems;

Motivation Distributed Grid Clustering Clustering Data Sources

Clustering Distributed Data Streams

Sensors are small, low-cost devices capable of sensing and communicating with other sensors.



Continuously maintain a cluster structure over the network.

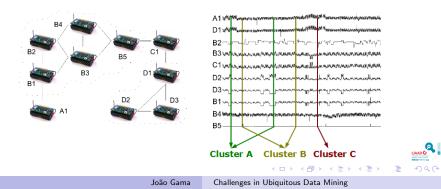
< ロ > < 同 > < 回 > < 回 >

Motivation Distributed Grid Clustering Clustering Data Sources

Clustering Distributed Data Streams

Continuously maintain a cluster structure of the data points generated by sensors.

• A Cluster is a set of data points: Information about dense regions of the sensor data space.

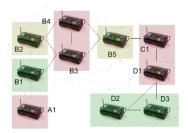


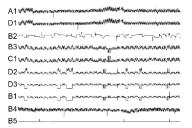
Motivation Distributed Grid Clustering Clustering Data Sources

Clustering Distributed Sources of Data Streams

Continuously maintain a cluster structure of the sensors producing data.

• A Cluster is a set of sensors: Information about groups of sensors that behave similarly over time.



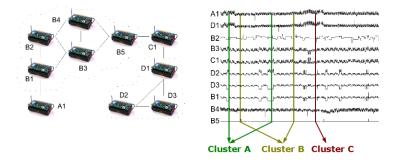


< ロ > < 同 > < 回 > < 回 >

Motivation Distributed Grid Clustering Clustering Data Sources

Clustering Distributed Data Streams

- A Cluster is a set of data points.
- Information about dense regions of the sensor data space



P. Rodrigues, J. Gama: Clustering Distributed Sensor Data Streams. ECML/PKDD 2008

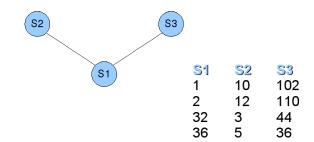
João Gama

Challenges in Ubiquitous Data Mining

Motivation Distributed Grid Clustering Clustering Data Sources

Clustering Distributed Data Streams

Clustering of sensor data gives information about dense regions of the sensor data space.



Roughly speaking, a 2-cluster analysis:

- low S1 \Leftrightarrow high S2 and S3
- high S1 \Leftrightarrow low S2 and S3

Motivation Distributed Grid Clustering Clustering Data Sources

Challenges

- High-speed data streams \rightarrow excessive storage and processing;
- Widely spread network \rightarrow heavy communication;
- Centralized clustering \rightarrow high dimensionality;
- Evolving data \rightarrow outdated models;

(a)

Motivation Distributed Grid Clustering Clustering Data Sources

System Overview

- Stpe 1 Each local sensor keeps an online ordinal discretization of its data stream
 - Sensor state $\in \{I, m, h\}$;
 - Only send state, when it changes.
- Step 2 The coordinator has the global state of the network
 - Network 3 Sensors state = {*I*, *I*, *h*};
 - keeps a small list of the most frequent states: $\{\langle I, m, h \rangle, \langle I, h, h \rangle \langle m, I, h \rangle, \langle m, I, m \rangle\}$

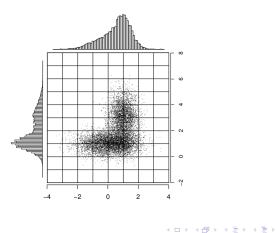
Step 3 Partitional clustering is applied to the frequent states.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation Distributed Grid Clustering Clustering Data Sources

System Overview

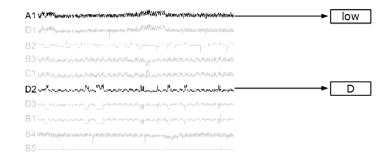
Reduce dimensionality and communication



Motivation Distributed Grid Clustering Clustering Data Sources

Step 1: Local Step

Each sensor keeps an online discretization of its data.



Reduce dimensionality and communication.

João Gama Cha

イロト イポト イヨト イヨト

Motivation Distributed Grid Clustering Clustering Data Sources

Local Adaptive Grid

- Incremental discretization at each sensor stream X_i using Partition Incremental Discretization ([Gama and Pinto, 2006]).
 - Two layer discretization:
 - The first layer simplifies and summarizes the data, using equal-width discretization;
 - The second layer constructs the final grid by merging the layer-one intervals.
- Update in constant time and (almost) constant space.

イロト イポト イヨト イヨト

Motivation Distributed Grid Clustering Clustering Data Sources

Step 2: Aggregation Step

The coordinator gathers the global state of the network Sensors whose state has not changed, do not transmit

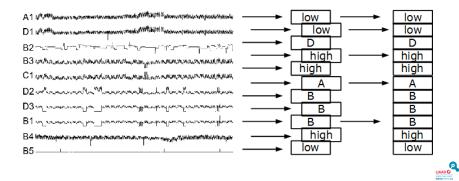


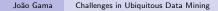
Image: A = A

Motivation Distributed Grid Clustering Clustering Data Sources

Communications

Heavy Load Communication \Rightarrow State sent to coordinator when state changes.

- Each sensor will send its state to the coordinator only if **it has changed** since last communication.
- The global state is synchronously updated at each time stamp as a combination of each local site's state;
 s(t) = ⟨s₁(t); s₂(t); ..., s_i(t)⟩
- If no information arrives from a local site *i*, the central site assumes that site *i* stays in the previous local state:
 s_i(t) ← s : i(t 1)



Motivation Distributed Grid Clustering Clustering Data Sources

Monitoring States

Metwally, D., A. Abbadi, *Efficient Computation of Frequent and Top-k Elements in Data Streams*, ICDT 2005

 The number of cell combinations to be monitored by the coordinate site is exponential to the number of sensors: O(w^d).

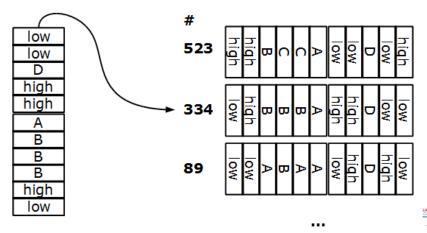
Only a small number of them represent frequent states.

- The Space-Saving Algorithm:
 - If current state is being monitored, increment its counter.
 - If it is not being monitored, replace the least frequent monitored state with current state and increment evicted counter.
- it tends to give more importance to recent examples, enhancing the adaptation of the system to data evolution.

Motivation Distributed Grid Clustering Clustering Data Sources

Frequent States

The coordinator keeps a small list of the most frequent global states



Motivation Distributed Grid Clustering Clustering Data Sources

Step 3: Centralized Cluster

 $\mathsf{Outdated}\ \mathsf{Models} \Rightarrow \mathsf{Online}\ \mathsf{Adaptive}\ \mathsf{k}\text{-}\mathsf{Means}\ \mathsf{Clustering}.$

- Each frequent state represents a multivariate point, defined by the central points of the corresponding unit cells.
- When the central site has a top-*m* set of states, with *m* > *k*, apply a simple partitional algorithm.

Motivation Distributed Grid Clustering Clustering Data Sources

Furthest Point Clustering

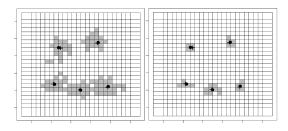
Furthest Point clustering:

- the first cluster center c_1 is chosen randomly among data points.
- Subsequent k 1 cluster centers are chosen as the points that are more distant from the previous centers c₁, c₂, ..., c_{i-1}, by maximizing the minimum distance to the centers.

Requires k passes over training points.

Motivation Distributed Grid Clustering Clustering Data Sources

Illustrative Example



System's granularity can be tuned to the resources available in the network.

João Gama Challenges in Ubiquitous Data Mining

Motivation Distributed Grid Clustering Clustering Data Sources

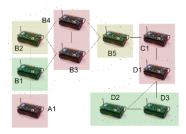
Main Achievements

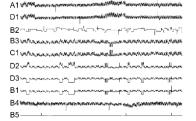
- Online discretization yields:
 - constant storage and processing load at local sensors;
 - a reduction of the system's sensitivity to uncertainty;
 - a reduction in communication (only when state changes).
- Frequent state monitoring yields:
 - a reduction on the server's memory requirements;
 - definition of representatives of dense regions of the sensor space.
- Online clustering of frequent states yields:
 - a reduction on the number of samples used in clustering;
 - a straightforward adaptation to most recent data.

Motivation Distributed Grid Clustering Clustering Data Sources

Clustering Distributed Sources of Data Streams

- A Cluster is a set of sensors;
- Information about groups of sensors that behave similarly over time.





Cluster A Cluster B Cluster C

P. Rodrigues, J. Gama: L2GClust: local-to-global clustering of stream sources. SAC 2011

Motivation Distributed Grid Clustering Clustering Data Sources

Challenges

P. Rodrigues, J. Gama: L2GClust: local-to-global clustering of stream sources. SAC 2011

- $\bullet\,$ High-speed data streams $\rightarrow\,$ excessive storage and processing;
- Widely spread network \rightarrow heavy communication;
- Evolving data \rightarrow outdated models;

(a)

Motivation Distributed Grid Clustering Clustering Data Sources

A k-means Algorithm for Evolving Data

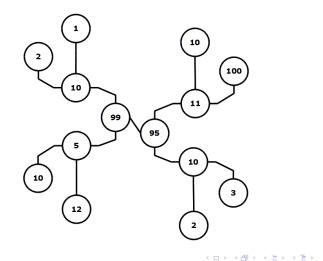
- Each sensor keeps a sketch of its most recent data.
- Focusing in the most recent data:
 - Sliding windows;
 - Forgetting factors.
- Scarce resources: Memoryless α -fading average

$$M_{\alpha}(i+1) = rac{x_i + \alpha imes S_{\alpha}(i)}{1 + \alpha imes N_{\alpha}(i)}$$

João Gama Challenges in Ubiquitous Data Mining

Motivation Distributed Grid Clustering Clustering Data Sources

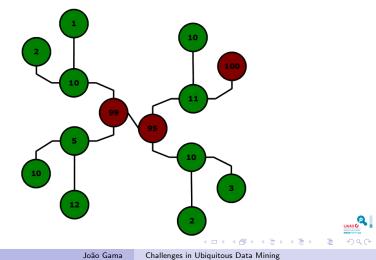
Example: Local Clustering



Motivation Distributed Grid Clustering Clustering Data Sources

Example: Local Clustering

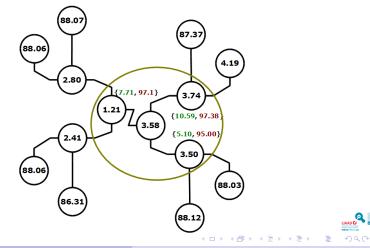
Centroids $\{6.9, 98.0\}$



Motivation Distributed Grid Clustering Clustering Data Sources

Example: Local Clustering

Centroids $\{6.9, 98.0\}$

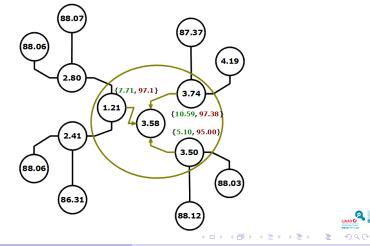


João Gama Challenges in Ubiquitous Data Mining

Motivation Distributed Grid Clustering Clustering Data Sources

Receiving Neighbors Data

Centroids {6.9, 98.0}

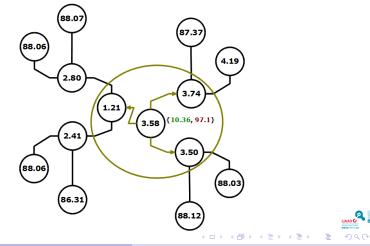


João Gama Challenges in Ubiquitous Data Mining

Motivation Distributed Grid Clustering Clustering Data Sources

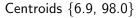
Sending Data to Neighbors

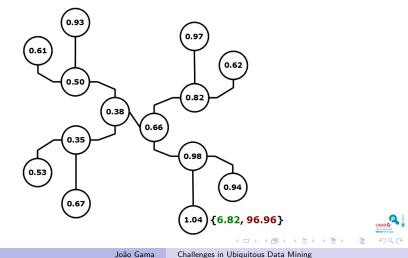
Centroids {6.9, 98.0}



Motivation Distributed Grid Clustering Clustering Data Sources

After 512 Iterations...





Motivation Distributed Grid Clustering Clustering Data Sources

Evaluation

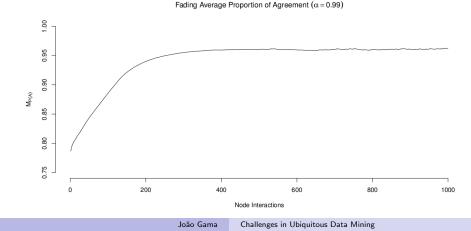
- Cluster validity: Proportion of agreement P(A)
- Cluster sanity: Kappa statistic K = (P(A) - P(e))/(1 - P(e))P(A): observed agreement; P(e): agreement by chance
- State-of-the-art Simulator

Each sensor in the simulation (Visual Sense) generates a Gaussian stream with mean from one of the predefined Gaussian clusters.

Motivation Distributed Grid Clustering Clustering Data Sources

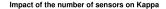
Evaluation

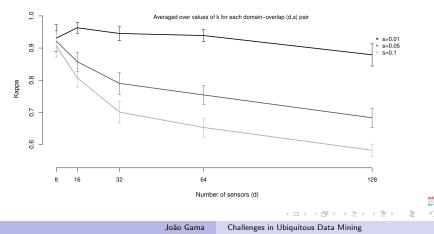
Average proportion of agreement converges (with small fluctuations).



Motivation Distributed Grid Clustering Clustering Data Sources

Evaluation

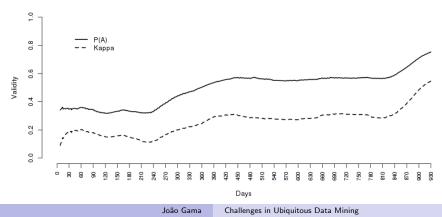




Motivation Distributed Grid Clustering Clustering Data Sources

Evaluation: Electrical Grid Data

Real data from electricity demand sensors



Evolution of Clustering Validity

Motivation Distributed Grid Clustering Clustering Data Sources

Lessons Learned

- Local sketch yields:
 - memoryless storage of summaries;
 - a straightforward adaptation to most recent data;
 - a reduction of the system's sensitivity to uncertainty;
- Local clustering with direct neighbors yields:
 - no forwarding of information (reduced communication);
 - low dimensionality of the clustering problem;
 - sensitive information better preserved.

・ロト ・同ト ・ヨト ・ヨト

A World in Movement

- The new characteristics of data:
 - **Time and space**: The objects of analysis exist in time and space. Often they are able to move.
 - **Dynamic environment**: The objects exist in a dynamic and evolving environment.
 - Information processing capability: The objects have limited information processing capabilities
 - **Locality**: The objects know only their local spatio-temporal environment;
 - **Distributed Environment**: Objects will be able to exchange information with other objects.
- Main Goal:
 - **Real-Time Analysis**: decision models have to evolve in correspondence with the evolving environment.

The Challenges of UDM

These characteristics imply:

- Switch from **one-shot learning** to continuously learning **dynamic models** that evolve over time.
- In the perspective induced by ubiquitous environments, *finite training sets, static models, and stationary distributions* will have to be completely thought anew.
- The algorithms will have to use *limited computational resources* (in terms of computations, space and time, communications).

・ロト ・同ト ・ヨト ・ヨト

Limited Rationality

Ubiquitous data mining implies new requirements to be considered:

- The algorithms will have to use *limited computational resources* (in terms of computations, space and time).
- The algorithms will have only a *limited random access to data* and may have to communicate with other agents;
- Answers will have to be ready in an *anytime protocol*.
- Data gathering and data (pre-)processing will be distributed.
 - In situ Data Analysis
 - Think Local Act Global

Where We Want to Go

The assumption that examples are *independent*, *identically distributed* does not hold.

- Learning in dynamic environments requires *Monitoring the Learning Process*.
- Embedding change detection methods in the learning algorithm is a requirement in the context of continuous flow of data.
- Data is distributed in nature:
 - In situ Data Analysis
 - Think Local Act Global

Limited Resources

- The design of learning algorithms must take into account:
 - Memory available is fixed.
 - Computational resources are limited.
 - Communication costs are high.
- Data is distributed in nature:
 - In situ Data Analysis
 - Think Local Act Global

Autonomy

Systems and algorithms with high level of autonomy:

- These systems address the problems of data processing, modeling, prediction, clustering, and control in changing and evolving environments.
- They self-evolve their structure and knowledge about the environment.
- They self-monitor the evolution of the learning process.

Thank you!

João Gama Challenges in Ubiquitous Data Mining

・ロト ・回ト ・ヨト ・ヨト