
 CORBA V2.3 June 1999 15-1

General Inter-ORB Protocol 15

The General Inter-ORB Protocol chapter has been updated based on CORE changes
from ptc/98-09-04, the Object by Value documents (orbos/98-01-18 and ptc/98-07-06),
bidirectional GIOP changes (interop/98-07-01) and the results of Interop RTF 2.4
(interop/99-03-01) have been incorporated. Please note that all changes since the base
2.2 version of this chapter are marked with changebars.

This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability,
which can be mapped onto any connection-oriented transport protocol that meets a
minimal set of assumptions. This chapter also defines a specific mapping of the GIOP
which runs directly over TCP/IP connections, called the Internet Inter-ORB Protocol
(IIOP). The IIOP must be supported by conforming networked ORB products
regardless of other aspects of their implementation. Such support does not require
using it internally; conforming ORBs may also provide bridges to this protocol.

Contents

This chapter contains the following sections.

Section Title Page

“Goals of the General Inter-ORB Protocol” 15-2

“GIOP Overview” 15-2

“CDR Transfer Syntax” 15-5

“GIOP Message Formats” 15-29

“GIOP Message Transport” 15-43

“Object Location” 15-46

“Internet Inter-ORB Protocol (IIOP)” 15-48

15-2 CORBA V2.3 June 1999

15

15.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability - The GIOP and IIOP are based on the most widely-
used and flexible communications transport mechanism available (TCP/IP), and
defines the minimum additional protocol layers necessary to transfer CORBA
requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting other
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of
bridged ORBs, to the size of today’s Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design should
require small engineering investment. Moreover, the run-time costs required to
support IIOP in deployed ORBs should be minimal.

• Generality - While the IIOP is initially defined for TCP/IP, GIOP message formats
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions
about the architecture of agents that will support it. The GIOP specification treats
ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal protocol,
it could choose to externalize IIOP as much as possible by implementing it in a half-
bridge, or it could choose a strategy between these two extremes. All that is required of
a conforming ORB is that some entity or entities in, or associated with, the ORB be
able to send and receive IIOP messages.

15.2 GIOP Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “on-
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

“Bi-Directional GIOP” 15-52

“Bi-directional GIOP policy” 15-55

“OMG IDL” 15-56

Section Title Page

CORBA V2.3 GIOP Overview June 1999 15-3

15

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate
object requests, locate object implementations, and manage communication
channels.

• GIOP Transport Assumptions. The GIOP specification describes general
assumptions made concerning any network transport layer that may be used to
transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIOP
to a specific transport (TCP/IP). The GIOP specification (without the transport-specific
IIOP element) may be considered as a separate conformance point for future mappings
to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in
Section 15.10, “OMG IDL,” on page 15-56. Fragments of the specification are used
throughout this chapter as necessary.

15.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

• Variable byte ordering - Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have different
byte order, the message originator determines the message byte order, and the
receiver is responsible for swapping bytes to match its native ordering. Each GIOP
message (and CDR encapsulation) contains a flag that indicates the appropriate byte
order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their natural
boundaries within GIOP messages, permitting data to be handled efficiently by
architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such as TypeCodes. Where
necessary, CDR defines representations for data types whose representations are
undefined or implementation-dependent in the CORBA Core specifications.

15.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-operating
ORBs. GIOP message formats have the following features:

15-4 CORBA V2.3 June 1999

15

• Few, simple messages. With only seven message formats, the GIOP supports full
CORBA functionality between ORBs, with extended capabilities supporting object
location services, dynamic migration, and efficient management of communication
resources. GIOP semantics require no format or binding negotiations. In most cases,
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object
implementation to be activated at different locations during its lifetime, and may
allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms
when unnecessary or inappropriate to an ORB’s architecture.

• Full CORBA support - GIOP messages directly support all functions and behaviors
required by CORBA, including exception reporting, passing operation context, and
remote object reference operations (such as CORBA::Object::get_interface).

GIOP also supports passing service-specific context, such as the transaction context
defined by the Transaction Service (the Transaction Service is described in
CORBAservices: Common Object Service Specifications). This mechanism is designed
to support any service that requires service related context to be implicitly passed with
requests.

15.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transport
protocol that meets a minimal set of assumptions (described in “GIOP Message
Transport” on page 15-43). GIOP uses underlying transport connections in the
following ways:

• Asymmetrical connection usage - The GIOP defines two distinct roles with respect
to connections, client, and server. The client side of a connection originates the
connection, and sends object requests over the connection. In GIOP versions 1.0
and 1.1, the server side receives requests and sends replies. The server side of a
connection may not send object requests. This restriction, which was included to
make GIOP 1.0 and 1.1 much simpler and avoid certain race conditions, has been
relaxed for GIOP version 1.2, as specified in the BiDirectional GIOP specification,
see Section 15.8, “Bi-Directional GIOP,” on page 15-52.

• Request multiplexing - If desirable, multiple clients within an ORB may share a
connection to send requests to a particular ORB or server. Each request uniquely
identifies its target object. Multiple independent requests for different objects, or a
single object, may be sent on the same connection.

• Overlapping requests - In general, GIOP message ordering constraints are minimal.
GIOP is designed to allow overlapping asynchronous requests; it does not dictate
the relative ordering of requests or replies. Unique request/reply identifiers provide
proper correlation of related messages. Implementations are free to impose any
internal message ordering constraints required by their ORB architectures.

• Connection management - GIOP defines messages for request cancellation and
orderly connection shutdown. These features allow ORBs to reclaim and reuse idle
connection resources.

CORBA V2.3 CDR Transfer Syntax June 1999 15-5

15

15.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which the
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer that
is to be sent to another process or machine over some IPC mechanism or network
transport. For the purposes of this discussion, an octet stream is an arbitrarily long (but
finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets
in the stream are numbered from 0 to n-1, where n is the size of the stream. The
numeric position of an octet in the stream is called its index. Octet indices are used to
calculate alignment boundaries, as described in Section 15.3.1.1, “Alignment,” on
page 15-5.

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the basic units of information exchange in GIOP, described in detail in
Section 15.4, “GIOP Message Formats,” on page 15-29.

Encapsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart from any particular message context. Once a data
structure has been encapsulated, the octet stream can be represented as the OMG IDL
opaque data type sequence<octet>, which can be marshaled subsequently into a
message or another encapsulation. Encapsulations allow complex constants (such as
TypeCodes) to be pre-marshaled; they also allow certain message components to be
handled without requiring full unmarshaling. Whenever encapsulations are used in
CDR or the GIOP, they are clearly noted.

15.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The
message formats (see Section 15.4, “GIOP Message Formats,” on page 15-29) include
tags in message headers that indicate the byte ordering in the message. Encapsulations
include an initial flag that indicates the byte ordering within the encapsulation,
described in Section 15.3.3, “Encapsulation,” on page 15-13. The byte ordering of any
encapsulation may be different from the message or encapsulation within which it is
nested. It is the responsibility of the message recipient to translate byte ordering if
necessary. Primitive data types are encoded in multiples of octets. An octet is an 8-bit
value.

15.3.1.1 Alignment

In order to allow primitive data to be moved into and out of octet streams with
instructions specifically designed for those primitive data types, in CDR all primitive
data types must be aligned on their natural boundaries (i.e., the alignment boundary of
a primitive datum is equal to the size of the datum in octets). Any primitive of size n
octets must start at an octet stream index that is a multiple of n. In CDR, n is one of 1,
2, 4, or 8.

15-6 CORBA V2.3 June 1999

15

Where necessary, an alignment gap precedes the representation of a primitive datum.
The value of octets in alignment gaps is undefined. A gap must be the minimum size
necessary to align the following primitive. Table 15-1 gives alignment boundaries for
CDR/OMG-IDL primitive types.

Alignment is defined above as being relative to the beginning of an octet stream. The
first octet of the stream is octet index zero (0); any data type may be stored starting at
this index. Such octet streams begin at the start of a GIOP message header (see
Section 15.4.1, “GIOP Message Header,” on page 15-29) and at the beginning of an
encapsulation, even if the encapsulation itself is nested in another encapsulation. (See
Section 15.3.3, “Encapsulation,” on page 15-13).

15.3.1.2 Integer Data Types

Figure 15-1 on page 15-7 illustrates the representations for OMG IDL integer data
types, including the following data types:

• short
• unsigned short
• long

• unsigned long
• long long

Table 15-1 Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2, or 4, depending on code set

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4

CORBA V2.3 CDR Transfer Syntax June 1999 15-7

15

• unsigned long long

The figure illustrates bit ordering and size. Signed types (short, long, and long
long) are represented as two’s complement numbers; unsigned versions of these types
are represented as unsigned binary numbers.

Figure 15-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

15.3.1.3 Floating Point Data Types

Figure 15-2 on page 15-9 illustrates the representation of floating point numbers.
These exactly follow the IEEE standard formats for floating point numbers1, selected
parts of which are abstracted here for explanatory purposes. The diagram shows three

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

MSB

LSB

LSB

MSB

15-8 CORBA V2.3 June 1999

15

different components for floating points numbers, the sign bit (s), the exponent (e) and
the fractional part (f) of the mantissa. The sign bit has values of 0 or 1, representing
positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in
the figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.0, f1
being most significant and f3 being least significant. The value of a normalized number
is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in the
figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m <
2.0, f1 being most significant and f7 being least significant. The value of a normalized
number is described by:

For double-extended floating-point values the exponent is 15 bits long, comprising e1
and e2 in the figure, where the 7 bits in e1 are the most significant. The fractional
mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The
value of a long double is determined by:

1
sign

2
exponent 127–()× 1 fraction+()×–

1
sign

2
exponent 1023–()× 1 fraction+()×–

1
sign

2
exponent 16383–()× 1 fraction+()×–

CORBA V2.3 CDR Transfer Syntax June 1999 15-9

15

Figure 15-2 Sizes and bit ordering in big-endian and little-endian representations of OMG IDL
single, double precision, and double extended floating point numbers.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-Endian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14 s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f140

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

long double

15-10 CORBA V2.3 June 1999

15

15.3.1.4 Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo
any conversion during transmission. For the purposes of describing possible octet
values in this specification, octets may be considered as unsigned 8-bit integer values.

15.3.1.5 Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE
as 0.

15.3.1.6 Character Types

An IDL character is represented as a single octet; the code set used for transmission of
character data (e.g., TCS-C) between a particular client and server ORBs is determined
via the process described in Section 13.7, “Code Set Conversion,” on page 13-27. In
the case of multi-byte encodings of characters, a single instance of the char type may
only hold one octet of any multi-byte character encoding.

Note – Full representation of multi-byte characters will require the use of an array of
IDL char variables.

For GIOP version 1.1, the transfer syntax for an IDL wide character depends on
whether the transmission code set (TCS-W, which is determined via the process
described in Section 13.7, “Code Set Conversion,” on page 13-27) is byte-oriented or
non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more octets,
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented as
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF
Character and Code Set Registry may be examined using the interfaces in
Section 13.9, “Relevant OSFM Registry Interfaces,” on page 13-40 to determine the
maximum length (max_bytes) of any character codepoint. For example, if the TCS-
W is ISO 10646 UCS-2 (Universal Character Set containing 2 bytes), then wide
characters are represented as unsigned shorts. For ISO 10646 UCS-4, they are
represented as unsigned longs.

For GIOP version 1.2, wchar is encoded as an unsigned binary octet value, followed
by the elements of the octet sequence representing the encoded value of the wchar.
The initial octet contains a count of the number of elements in the sequence, and the
elements of the sequence of octets represent the wchar, using the negotiated wide
character encoding.

CORBA V2.3 CDR Transfer Syntax June 1999 15-11

15

Note – The GIOP 1.2 encoding of wchar is similar to the encoding of an octet
sequence, except for its use of a single octet to encode the value of the length.

For GIOP versions prior to 1.2, interoperability for wchar is limited to the use of two-
octet fixed-length encoding.

Wchar values in encapsulations are assumed to be encoded using GIOP version 1.2
CDR.

15.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the
OMG IDL language.

15.3.2.1 Alignment

Constructed types have no alignment restrictions beyond those of their primitive
components. The alignment of those primitive types is not intended to support use of
marshaling buffers as equivalent to the implementation of constructed data types within
any particular language environment. GIOP assumes that agents will usually construct
structured data types by copying primitive data between the marshaled buffer and the
appropriate in-memory data structure layout for the language mapping implementation
involved.

15.3.2.2 Struct

The components of a structure are encoded in the order of their declaration in the
structure. Each component is encoded as defined for its data type.

15.3.2.3 Union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as its type
indicates.

15.3.2.4 Array

Arrays are encoded as the array elements in sequence. As the array length is fixed, no
length values are encoded. Each element is encoded as defined for the type of the
array. In multidimensional arrays, the elements are ordered so the index of the first
dimension varies most slowly, and the index of the last dimension varies most quickly.

15-12 CORBA V2.3 June 1999

15

15.3.2.5 Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the
sequence. The initial unsigned long contains the number of elements in the sequence.
The elements of the sequence are encoded as specified for their type.

15.3.2.6 Enum

Enum values are encoded as unsigned longs. The numeric values associated with enum
identifiers are determined by the order in which the identifiers appear in the enum
declaration. The first enum identifier has the numeric value zero (0). Successive enum
identifiers take ascending numeric values, in order of declaration from left to right.

15.3.2.7 Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets,
followed by the string value in single- or multi-byte form represented as a sequence of
octets. Both the string length and contents include a terminating null.

For GIOP version 1.1 and 1.2, when encoding a string, always encode the length as the
total number of bytes used by the encoding string, regardless of whether the encoding
is byte-oriented or not.

For GIOP version 1.1, a wide string is encoded as an unsigned long indicating the
length of the string in octets or unsigned integers (determined by the transfer syntax for
wchar) followed by the individual wide characters. Both the string length and contents
include a terminating null. The terminating null character for a wstring is also a wide
character.

For GIOP version 1.2, when encoding a wstring, always encode the length as the total
number of octets used by the encoded value, regardless of whether the encoding is
byte-oriented or not. For GIOP version 1.2 a wstring is not terminated by a NUL
character. In particular, in GIOP version 1.2 a length of 0 is legal for wstring.

Note – For GIOP versions prior to 1.2, interoperability for wstring is limited to the use
of two-octet fixed-length encoding.

Wstring values in encapsulations are assumed to be encoded using GIOP version 1.2
CDR.

15.3.2.8 Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in Table
15-4 on page 15-13. Each octet contains (up to) two decimal digits. If the fixed type
has an odd number of decimal digits, then the representation begins with the first (most
significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero, and the
first digit is in the second half-octet — d1 in the figure. The sign configuration, in the
last half-octet of the representation, is 0xD for negative numbers and 0xC for positive
and zero values.

CORBA V2.3 CDR Transfer Syntax June 1999 15-13

15

Decimal digits are encoded as hexadecimal values in each half-octet as follows:

Figure 15-3 Decimal Digit Encoding for Fixed Type

Figure 15-4 IDL Fixed Type Representation

15.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL type
sequence<octet>, which may be subsequently included in a GIOP message or
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see
Section 15.3.5.1, “TypeCode,” on page 15-22), the IIOP protocol profile inside an IOR
(see Section 15.3.6, “Object References,” on page 15-28), and in service-specific
context (see Section 13.6.7, “Object Service Context,” on page 13-22). In addition,
some ORBs may choose to use an encapsulation to hold the object_key (see
Section 15.7.2, “IIOP IOR Profiles,” on page 15-49), or in other places that a
sequence<octet> data type is in use.

0

1

2
...

9

0x0

0x1

0x2

...

0x9

Decimal Digit Half-Octet Value

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

15-14 CORBA V2.3 June 1999

15

When encapsulating OMG IDL data types, the first octet in the stream (index 0)
contains a boolean value indicating the byte ordering of the encapsulated data. If the
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE
(1), the data is encoded in little-endian order, exactly like the byte order flag in GIOP
message headers (see Section 15.4.1, “GIOP Message Header,” on page 15-29). This
value is not part of the data being encapsulated, but is part of the octet stream holding
the encapsulation. Following the byte order flag, the data to be encapsulated is
marshaled into the buffer as defined by CDR encoding rules. Marshaled data are
aligned relative to the beginning of the octet stream (the first octet of which is
occupied by the byte order flag).

When the encapsulation is encoded as type sequence<octet> for subsequent
marshaling, an unsigned long value containing the sequence length is prefixed to the
octet stream, as prescribed for sequences (see Section 15.3.2.5, “Sequence,” on
page 15-12). The length value is not part of the encapsulation’s octet stream, and does
not affect alignment of data within the encapsulation.

Note that this guarantees a four-octet alignment of the start of all encapsulated data
within GIOP messages and nested encapsulations.2

15.3.4 Value Types

Value types are built from OMG IDL’s value type definitions. Their representation and
encoding is defined in this section.

Value types may be used to transmit and encode complex state. The general approach
is to support the transmission of the data (state) and type information encoded as
RepositoryIDs.

The loading (and possible transmission) of code is outside of the scope of the GIOP
definition, but enough information is carried to support it, via the CodeBase object.

The format makes a provision for the support of custom marshaling (i.e., the encoding
and transmission of state using application-defined code). Consistency between custom
encoders and decoders is not ensured by the protocol

The encoding supports all of the features of value types as well as supporting the
“chunking” of value types. It does so in a compact way.

At a high level the format can be described as the linearization of a graph. The graph
is the depth-first exploration of the transitive closure that starts at the top-level value
object and follows its “reference to value objects” fields (an ordinary remote reference
is just written as an IOR). It is a recursive encoding similar to the one used for
TypeCodes. An indirection is used to point to a value that has already been encoded.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greater
than four octets, some processors may need to copy the octet data before removing it from
the encapsulation. The GIOP protocol itself does not require encapsulation of such data.

CORBA V2.3 CDR Transfer Syntax June 1999 15-15

15

The data members are written beginning with the highest possible base type to the
most derived type in the order of their declaration.

15.3.4.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in the
receiving context. However the encoding has been designed so that this information is
only required when “advanced features” such as truncation are used.

The presence (or absence) of type information and codebase URL information is
indicated by flags within the <value_tag>, which is a long in the range between
0x7fffff00 and 0x7fffffff inclusive. The last octet of this tag is interpreted as follows:

• The least significant bit (<value_tag> & 0x00000001) is the value 1 if a
<codebase_URL> is present. If this bit is 0, no <codebase_URL> follows in the
encoding. The <codebase_URL> is a blank-separated list of one or more URLs.

• The second and third least significant bits (<value_tag> & 0x00000006) are:

• the value 0 if no type information is present in the encoding. This indicates the
actual parameter is the same type as the formal argument.

• the value 2 if only a single repository id is present in the encoding, which
indicates the most derived type of the actual parameter (which may be either the
same type as the formal argument or one of its derived types).

• the value 6 if the partial type information list of repository ids is present in the
encoding as a list of repository ids.

When a list of RepositoryIDs is present, the encoding is a long specifying the
number of RepositoryIDs, followed by the RepositoryIDs. The first RepositoryID
is the id for the most derived type of the value. If this type has any base types, the
sending context is responsible for listing the RepositoryIDs for all the base types to
which it is safe to truncate the value passed. These truncatable base types are listed in
order, going up the derivation hierarchy. The sending context may choose to (but need
not) terminate the list at any point after it has sent a RepositoryID for a type well-
known to the receiving context. A well-known type is any of the following:

• a type that is a formal parameter, result of the method call, or exception, for which
this GIOP message is being marshaled

• a base type of a well-known type

• a member type of a well-known type

• an element type of a well known type

For value types that have an RMI: RepositoryId, ORBs must include at least the most
derived RepositoryId, in the value type encoding.

For value types marshaled as abstract interfaces (see Section 15.3.7, “Abstract
Interfaces,” on page 15-29), RepositoryId information must be included in the value
type encoding.

15-16 CORBA V2.3 June 1999

15

If the receiving context needs more typing information than is contained in a GIOP
message that contains a codebase URL information, it can go back to the sending
context and perform a lookup based on that RepositoryID to retrieve more typing
information (e.g., the type graph).

CORBA RepositoryIDs may contain standard version identification (major and
minor version numbers or a hash code information). The ORB run time may use this
information to check whether the version of the value being transmitted is compatible
with the version expected. In the event of a version mismatch, the ORB may apply
product-specific truncation/conversion rules (with the help of a local interface
repository or the SendingContext::RunTime service). For example, the Java
serialization model of truncation/conversion across versions can be supported. See the
JDK 1.1 documentation for a detailed specification of this model.

15.3.4.2 Example

The following examples demonstrate legal combinations of truncatability, actual
parameter types and GIOP encodings. This is not intended to be an exhaustive list of
legal possibilities.

The following example uses valuetypes animal and horse, where horse is derived
from animal. The actual parameters passed to the specified operations are an_animal
of runtime type animal and a_horse of runtime type horse.

The following combinations of truncatability, actual parameter types and GIOP
encodings are legal.

1. If there is a single operation:

 op1(in animal a);

a) If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown in Table 15-2 below:

Note that if the type horse is not available to the receiver, then the receiver throws
a demarshaling exception.

b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

Table 15-2

Actual Invocation Legal Encoding

op1(a_horse) 2 horse

6 1 horse

CORBA V2.3 CDR Transfer Syntax June 1999 15-17

15

then the encoding is as shown in Table 15-3 below

Note that if the type horse is not available to the receiver, then the receiver tries to
truncate to animal.

c) Regardless of the truncation relationships, when the exact type of the formal
argument is sent, then the encoding is as shown in Table 15-4 below:

2. Given the additional operation:

 op2(in horse h);

(i.e., the sender knows that both types horse and animal and their derivation
relationship are known to the receiver)

a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown in Table 15-5 below:

Note that the demarshaling exception of case 1 will not occur, since horse is
available to the receiver.

 b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

Table 15-3

Actual Invocation Legal Encoding

 op1(a_horse) 6 2 horse animal

Table 15-4

Actual Invocation Legal Encoding

 op1(an_animal) 0

2 animal

6 1 animal

Table 15-5

Actual Invocation Legal Encoding

 op2(a_horse) 2 horse

6 1 horse

15-18 CORBA V2.3 June 1999

15

then the encoding is as shown in Table 15-6 below:

Note that truncation will not occur, since horse is available to the receiver.

15.3.4.3 Scope of the Indirections

The special value 0xffffffff introduces an indirection (i.e., it directs the decoder to go
somewhere else in the marshaling buffer to find what it is looking for). This can be
codebase URL information which has already been encoded, a RepositoryID which
has already been encoded, a list of repository IDs which has already been encoded, or
another value object which is shared in a graph. 0xffffffff is always followed by a long
indicating where to go in the buffer.

The encoding used for indirection is the same as that used for recursive TypeCodes
(i.e., a 0xffffffff indirection marker followed by a long offset (in units of octets) from
the beginning of the long offset). As an example, this means that an offset of negative
four (-4) is illegal, because it is self-indirecting to its indirection marker. Indirections
may refer to any preceding location in the GIOP message, including previous
fragments if fragmentation is used. This includes any previously marshaled parameters.
Non-negative offsets are reserved for future use. Indirections may not cross
encapsulation boundaries.

15.3.4.4 Other Encoding Information

A “new” value is coded as a value header followed by the value’s state. The header
contains a tag and codebase URL information if appropriate, followed by the
RepositoryID and an octet flag of bits. Because the same RepositoryID (and
codebase URL information) could be repeated many times in a single request when
sending a complex graph, they are encoded as a regular string the first time they
appear, and use an indirection for later occurrences.

15.3.4.5 Fragmentation

It is anticipated that value types may be rather large, particularly when a graph is being
transmitted. Hence the encoding supports the breaking up of the serialization into an
arbitrary number of chunks in order to facilitate incremental processing.

Values with truncatable base types need a length indication in case the receiver needs to
truncate them to a base type. Value types that are custom marshaled also need a length
indication so that the ORB run time can know exactly where they end in the stream
without relying on user-defined code. This allows the ORB to maintain consistency and

Table 15-6

Actual Invocation Legal Encoding

op2 (a_horse) 2 horse

6 1 horse

6 2 horse animal

CORBA V2.3 CDR Transfer Syntax June 1999 15-19

15

ensure the integrity of the GIOP stream when the user-written custom marshaling and
demarshaling does not marshal the entire value state. For simplicity of encoding, we
use a length indication for all values whether or not they have a truncatable base type
or use custom marshaling.

If limited space is available for marshaling, it may be necessary for the ORB to send
the contents of a marshaling buffer containing a partially marshaled value as a GIOP
fragment. At that point in the marshaling, the length of the entire value being
marshaled may not be known. Calculating this length may require processing as costly
as marshaling the entire value. It is therefore desirable to allow the value to be encoded
as multiple chunks, each with its own length. This allows the portion of a value that
occupies a marshaling buffer to be sent as a chunk of known length with no need for
additional length calculation processing.

The data may be split into multiple chunks at arbitrary points except within primitive
CDR types, arrays of primitive types, strings, and wstrings. It is never necessary to end
a chunk within one of these types as the length of these types is known before starting
to marshal them so they can be added to the length of the currently open chunk. It is
the responsibility of the CDR stream to hide the chunking from the marshaling code.

The presence (or absence) of chunking is indicated by flags within the <value_tag>.
The fourth least significant bit (<value_tag> & 0x00000008) is the value 1 if a
chunked encoding is used for the value’s state. The chunked encoding is required for
custom marshaling and truncation. If this bit is 0, the state is encoded as <octets>.

Each chunk is preceded by a positive long which specifies the number of octets in the
chunk.

A chunked value is terminated by an end tag which is a non-positive long so the start
of the next value can be differentiated from the start of another chunk. In the case of
values which contain other values (e.g., a linked list) the “nested” value is started
without there being an end tag. The absolute value of an end tag (when it finally
appears) indicates the nesting level of the value being terminated. A single end tag can
be used to terminate multiple nested values. The detailed rules are as follows:

• End tags, chunk size tags, and value tags are encoded using non-overlapping ranges
so that the unmarshaling code can tell after reading each chunk whether:

• another chunk follows (positive tag).

• one or multiple value types are ending at a given point in the stream (negative
tag).

• a nested value follows (special large positive tag).

• The end tag is a negative long whose value is the negation of the absolute nesting
depth of the value type ending at this point in the CDR stream. Any value types that
have not already been ended and whose nesting depth is greater than the depth
indicated by the end tag are also implicitly ended. The tag value 0 is reserved for
future use (e.g., supporting a nesting depth of more than 2^31). The outermost
value type will always be terminated by an end tag with a value of -1.

The following example describes how end tags may be used. Consider a valuetype
declaration that contains two member values:

15-20 CORBA V2.3 June 1999

15

// IDL
valuetype simpleNode{ ... };
valuetype node truncatable simpleNode {
public node node1;
public node node2;

};

When an instance of type ‘node’ is passed as a parameter of type ‘simpleNode’,
a chunked encoding is used. In all cases, the outermost value is terminated with an
end tag with a value of -1. The nested value ‘node1’ is terminated with an end tag
with a value of -2 since only the second-level value, ‘node1,’ ends at that point.
Since the nested value ‘node2’ coterminates with the outermost value, either of the
following end tag layouts is legal:

• A single end tag with a value of -1 marks the termination of the outermost value,
implying the termination of the nested value, ‘node2’as well. This is the most
compact marshaling.

• An end tag with a value of -2 marks the termination of the nested value, ‘node2.’
This is then followed by an end tag with a value of -1 to mark the termination of
the outermost value.

Because data members are encoded in their declaration order, declaring a value type
data member of a value type last is likely to result in more compact encoding on the
wire because it maximizes the number of values ending at the same place and so
allows a single end tag to be used for multiple values. The canonical example for
that is a linked list.

• Chunks are never nested. When a value is nested within another value, the outer
value’s chunk ends at the place in the stream where the inner value starts. If the
outer value has non-value data to be marshaled following the inner value, the end
tag for the inner value is followed by a continuation chunk for the remainder of the
outer value. For the purposes of chunking, values encoded as indirections or null are
treated as non-value data.

• Regardless of the above rules, any value nested within a chunked value is always
chunked. Furthermore, any such nested value that is truncatable must encode its
type information as a list of RepositoryIDs (see Section 15.3.4.1, “Partial Type
Information and Versioning,” on page 15-15).

Truncating a value type in the receiving context may require keeping track of unused
nested values (only during unmarshaling) in case further indirection tags point back to
them. These values can be held in their “raw” GIOP form, as fully unmarshaled value
objects, or in any other product-specific form.

Value types that are custom marshaled are encoded as chunks in order to let the ORB
run-time know exactly where they end in the stream without relying on user-defined
code.

CORBA V2.3 CDR Transfer Syntax June 1999 15-21

15

15.3.4.6 Notation

The on-the-wire format is described by a BNF grammar with conventions similar to the
ones used to define IDL syntax. The terminals of the grammar are to be interpreted
differently. We are describing a protocol format. Although the terminals have the same
names as IDL tokens they represent either:

• constant tags, or

• the GIOP CDR encoding of the corresponding IDL construct.

For example, long is a shorthand for the GIOP encoding of the IDL long data type -
with all the GIOP alignment rules. Similarly struct is a shorthand for the GIOP CDR
encoding of a struct.

A (type) constant means that an instance of the given type having the given value is
encoded according to the rules for that type. So that (long) 0 means that a CDR
encoding for a long having the value 0 appears at that location.

15.3.4.7 The Format

(1) <value> ::= <value_tag> [<codebase_URL>]
[<type_info>] <state>

| <value_ref>
(2) <value_ref> ::= <indirection_tag> <indirection> | <null_tag>
(3) <value_tag> ::= long// 0x7fffff00 <= value_tag <= 0x7fffffff
(4) <type_info> ::= <rep_ids> | <repository_id>
(5) <state> ::= <octets> |<value_data>+ [<end_tag>]
(6) <value_data> ::= <value_chunk> | <value>
(7) <rep_ids> ::= long <repository_id>+

| <indirection_tag> <indirection>
(8) <repository_id> ::= string | <indirection_tag> <indirection>
(9) <value_chunk> ::= <chunk_size_tag> <octets>
(10) <null_tag> ::= (long) 0
(11) <indirection_tag> ::= (long) 0xffffffff
(12) <codebase_URL> ::= string | <indirection_tag> <indirection>
(13) <chunk_size_tag> ::= long

// 0 < chunk_size_tag < 2^31-256 (0x7fffff00)
(14) <end_tag> ::= long // -2^31 < end_tag < 0
(15) <indirection> ::= long // -2^31 < indirection < 0
(16) <octets> ::= octet | octet <octets>

The concatenated octets of consecutive value chunks within a value encode state
members for the value according to the following grammar:

(1) <state members> ::= <state_member>
| <state_member> <state members>

(2) <state_member> ::= <value_ref>
// All legal IDL types should be here

| octet

15-22 CORBA V2.3 June 1999

15

| boolean
| char
| short
| unsigned short
| long
| unsigned long
| float
| wchar
| wstring
| string
| struct
| union
| sequence
| array
| CORBA::Object
| any

15.3.5 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or
floating point) nor constructed ones.

15.3.5.1 TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed by
values that represent the TypeCode parameters. Unfortunately, TypeCodes cannot be
expressed simply in OMG IDL, since their definitions are recursive. The basic
TypeCode representations are given in Table 15-7 on page 15-24. The integer value
column of this table gives the TCKind enum value corresponding to the given
TypeCode, and lists the parameters associated with such a TypeCode. The rest of this
section presents the details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum
values, using four octets), followed by zero or more parameter values. The encodings
of the parameter lists fall into three general categories, and differ in order to conserve
space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding
TCKind enum value.

• Typecodes with simple parameter lists are encoded as the TCKind enum value
followed by the parameter value(s), encoded as indicated in Table 15-7. A “simple”
parameter list has a fixed number of fixed length entries, or a single parameter
which has its length encoded first.

CORBA V2.3 CDR Transfer Syntax June 1999 15-23

15

• All other typecodes have complex parameter lists, which are encoded as the
TCKind enum value followed by a CDR encapsulation octet sequence (see
Section 15.3.3, “Encapsulation,” on page 15-13) containing the encapsulated,
marshaled parameters. The order of these parameters is shown in the fourth column
of Table 15-7.

The third column of Table 15-7 shows whether each parameter list is empty, simple, or
complex. Also, note that an internal indirection facility is needed to represent some
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated
TypeCodes” on page 15-27. This indirection does not need to be exposed to application
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 15-7. The ordering
and meaning of parameters is a superset of those given in Section 10.7, “TypeCodes,”
on page 10-48; more information is needed by CDR’s representation in order to
provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the
parameter’s type, and name describes the parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, tk_union,
tk_enum, and tk_except) contain a counted sequence of tuples.

Such counted tuple sequences are written in the form count {parameters}, where
count is the number of tuples in the encoded form, and the parameters enclosed in
braces are available in each tuple instance. First the count, which is an unsigned
long, and then each parameter in each tuple (using the noted type), is encoded in
the CDR representation of the typecode. Each tuple is encoded, first parameter
followed by second, before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct, union, exception, and enum members must
be in the order defined in the OMG IDL definition text. Also, that the types of
discriminant values in encoded tk_union TypeCodes are established by the second
encoded parameter (discriminant type), and cannot be specified except with reference
to a specific OMG IDL definition.3

Encoded Identifiers and Names

The Repository ID parameters in tk_objref, tk_struct, tk_union, tk_enum,
tk_alias, tk_except, tk_native, tk_value, tk_value_box and
tk_abstract_interface TypeCodes are Interface Repository RepositoryId values,
whose format is described in the specification of the Interface Repository. For GIOP
1.2 onwards, repositoryID values are mandatory. For GIOP 1.0 and 1.1, RepositoryId

3. This means that, for example, two OMG IDL unions that are textually equivalent, except
that one uses a “char” discriminant, and the other uses a “long” one, would have different
size encoded TypeCodes.

15-24 CORBA V2.3 June 1999

15

Table 15-7TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID),
string(name)

tk_struct 15 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_union 16 complex string (repository ID),
string(name),
TypeCode (discriminant type),
long (default used),
ulong (count)
{discriminant type1 (label
value),
string (member name),
TypeCode (member type)}

CORBA V2.3 CDR Transfer Syntax June 1999 15-25

15

tk_enum 17 complex string (repository ID),
string (name),
ulong (count)
{string (member name)}

tk_string 18 simple ulong (max length2)

tk_sequence 19 complex TypeCode (element type),
ulong (max length3)

tk_array 20 complex TypeCode (element type),
ulong (length)

tk_alias 21 complex string (repository ID),
string (name),
TypeCode

tk_except 22 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_longlong 23 empty – none –

tk_ulonglong 24 empty – none –

tk_longdouble 25 empty – none –

tk_wchar 26 empty – none –

tk_wstring 27 simple ulong(max length or zero if
unbounded)

tk_fixed 28 simple ushort(digits), short(scale)

tk_value 29 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),

TypeCode(of concrete base)4,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

tk_value_box 30 complex string (repository ID),
string(name),
TypeCode

Table 15-7TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters

15-26 CORBA V2.3 June 1999

15

values are required for tk_objref and tk_except TypeCodes; for tk_struct,
tk_union, tk_enum, and tk_alias TypeCodes RepositoryIds are optional and
encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
tk_value, tk_value_box, tk_abstract_interface, tk_native and tk_except
TypeCodes and the member name parameters in tk_struct, tk_union, tk_enum,
tk_value and tk_except TypeCodes are not specified by (or significant in) GIOP.
Agents should not make assumptions about type equivalence based on these name
values; only the structural information (including RepositoryId values, if provided) is
significant. If provided, the strings should be the simple, unscoped names supplied in
the OMG IDL definition text. If omitted, they are encoded as empty strings.

Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which tuple in
the sequence describes the union’s default case. If this value is less than zero, then the
union contains no default case. Otherwise, the value contains the zero-based index of
the default case in the sequence of tuples describing union members.

The discriminant value used in the actual typecode parameter associated with the
default member position in the list, may be any valid value of the discriminant type,
and has no semantic significance (i.e., it should be ignored and is only included for
syntactic completeness of union type code marshaling).

tk_native 31 complex string (repository ID),
string(name)

tk_abstract_interface 32 compl
ex

string(RepositoryId),
string(name)

– none – 0xffffffff simple long (indirection5)

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. Should be tk_null if there is no concrete base.

5. See “Indirection: Recursive and Repeated TypeCodes” on page 15-27.

Table 15-7TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters

CORBA V2.3 CDR Transfer Syntax June 1999 15-27

15

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes for
multi-dimensional arrays are constructed by nesting tk_array TypeCodes within other
tk_array TypeCodes, one per array dimension. The outermost (or top-level) tk_array
TypeCode describes the leftmost array index of the array as defined in IDL; the
innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain
instances of themselves (e.g., struct foo {sequence <foo> bar;}) must also contain
an indirection. Such an indirection is also useful to reduce the size of encodings; for
example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top-level”
TypeCode. Indirected TypeCodes are not “freestanding,” but only exist inside some
other encoded TypeCode.

• Only the second (and subsequent) references to a TypeCode in that scope may use
the indirection facility. The first reference to that TypeCode must be encoded using
the normal rules. In the case of a recursive TypeCode, this means that the first
instance will not have been fully encoded before a second one must be completely
encoded.

The indirection is a numeric octet offset within the scope of the “top-level” TypeCode
and points to the TCKind value for the typecode. (Note that the byte order of the
TCKind value can be determined by its encoded value.) This indirection may well
cross encapsulation boundaries, but this is not problematic because of the first
constraint identified above. Because of the second constraint, the value of the offset
will always be negative.

Fragmentation support in GIOP versions 1.1 and 1.2 introduces the possibility of a
header for a FragmentMessage being marshaled between the target of an indirection
and the start of the encapsulation containing the indirection. The octets occupied by
any such headers are not included in the calculation of the offset value.

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has
the special value 232-1 (0xffffffff, all ones). Such typecodes have a single (simple)
parameter, which is the long offset (in units of octets) from the simple parameter.
(This means that an offset of negative four (-4) is illegal because it will be self-
indirecting.)

15.3.5.2 Any

Any values are encoded as a TypeCode (encoded as described above) followed by the
encoded value.

15-28 CORBA V2.3 June 1999

15

15.3.5.3 Principal

Principal pseudo objects are encoded as sequence<octet>. In the absence of a
Security service specification, Principal values have no standard format or
interpretation, beyond serving to identify callers (and potential callers). This
specification does not prescribe any usage of Principal values.

By representing Principal values as sequence<octet>, GIOP guarantees that ORBs
may use domain-specific principal identification schemes; such values undergo no
translation or interpretation during transmission. This allows bridges to translate or
interpret these identifiers as needed when forwarding requests between different
security domains.

15.3.5.4 Context

Context pseudo objects are encoded as sequence<string>. The strings occur in
pairs. The first string in each pair is the context property name, and the second string
in each pair is the associated value.

15.3.5.5 Exception

Exceptions are encoded as a string followed by exception members, if any. The string
contains the RepositoryId for the exception, as defined in the Interface Repository
chapter. Exception members (if any) are encoded in the same manner as a struct.

If an ORB receives a non-standard system exception that it does not support, or a user
exception that is not defined as part of the operation's definition, the exception shall be
mapped to UNKNOWN.

15.3.6 Object References

Object references are encoded in OMG IDL (as described in Section 13.5, “Object
Addressing,” on page 13-12). IOR profiles contain transport-specific addressing
information, so there is no general-purpose IOR profile format defined for GIOP.
Instead, this specification describes the general information model for GIOP profiles
and provides a specific format for the IIOP (see “IIOP IOR Profiles” on page 15-49).

In general, GIOP profiles include at least these three elements:

1. The version number of the transport-specific protocol specification that the server
supports.

2. The address of an endpoint for the transport protocol being used.

3. An opaque datum (an object_key, in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the object.

CORBA V2.3 GIOP Message Formats June 1999 15-29

15

15.3.7 Abstract Interfaces

Abstract interfaces are encoded as a union with a boolean discriminator. The union
has an object reference (see Section 15.3.6, “Object References,” on page 15-28) if the
discriminator is TRUE, and a value type (see Section 15.3.4, “Value Types,” on
page 15-14) if the discriminator is FALSE. The encoding of value types marshaled as
abstract interfaces always includes RepositoryId information. If there is no indication
whether a nil abstract interface represents a nil object reference or a null valuetype, it
shall be encoded as a null valuetype.

15.4 GIOP Message Formats

GIOP has restriction on client and server roles with respect to initiating and receiving
messages. For the purpose of GIOP versions 1.0 and 1.1, a client is the agent that
opens a connection (see more details in Section 15.5.1, “Connection Management,” on
page 15-44) and originates requests. Likewise, for GIOP versions 1.0 and 1.1, a server
is an agent that accepts connections and receives requests.When Bidirectional GIOP is
in use for GIOP protocol version 1.2, either side may originate messages, as specified
in Section 15.8, “Bi-Directional GIOP,” on page 15-52.

GIOP message types are summarized in Table 15-8, which lists the message type
names, whether the message is originated by client, server, or both, and the value used
to identify the message type in GIOP message headers.

15.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1 and 1.2
struct Version {

octet major;

Table 15-8 GIOP Message Types and Originators

Message Type Originator Value GIOP
Versions

Request Client 0 1.0, 1.1, 1.2

Reply Server 1 1.0, 1.1, 1.2

CancelRequest Client 2 1.0, 1.1, 1.2

LocateRequest Client 3 1.0, 1.1, 1.2

LocateReply Server 4 1.0, 1.1, 1.2

CloseConnection Server 5 1.0, 1.1, 1.2

MessageError Both 6 1.0, 1.1, 1.2

Fragment Both 7 1.1, 1.2

15-30 CORBA V2.3 June 1999

15

octet minor;
};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1 {
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // GIOP_1_1

// GIOP 1.0
struct MessageHeader_1_0 { // Renamed from MessageHeader

 char magic [4];
Version GIOP_version;

 boolean byte_order;
octet message_type;

 unsigned long message_size;
};

// GIOP 1.1
struct MessageHeader_1_1 {

 char magic [4];
Version GIOP_version;
octet flags; // GIOP 1.1 change

 octet message_type;
 unsigned long message_size;

};

// GIOP 1.2
typedef MessageHeader_1_1 MessageHeader_1_2;

};

The message header clearly identifies GIOP messages and their byte-ordering. The
header is independent of byte ordering except for the field encoding message size.

• magic identifies GIOP messages. The value of this member is always the four
(upper case) characters “GIOP,” encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in the
message. The version number applies to the transport-independent elements of this
specification (i.e., the CDR and message formats) which constitute the GIOP. This

CORBA V2.3 GIOP Message Formats June 1999 15-31

15

is not equivalent to the IIOP version number (as described in Section 15.3.6,
“Object References,” on page 15-28) though it has the same structure. The major
GIOP version number of this specification is one (1); the minor versions are zero
(0), one (1), and two (2).

A server implementation supporting a minor GIOP protocol version 1.n (with n > 0
and n < 3), must also be able to process GIOP messages having minor protocol
version 1.m, with m less than n. A GIOP server which receives a request having a
greater minor version number than it supports, should respond with an error
message having the highest minor version number that that server supports, and
then close the connection.

A client should not send a GIOP message having a higher minor version number
than that published by the server in the tag Internet IIOP Profile body of an IOR.

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent
elements of the message (including message_size). A value of FALSE (0)
indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.

• flags (in GIOP 1.1 and 1.2) is an 8-bit octet. The least significant bit indicates the
byte ordering used in subsequent elements of the message (including
message_size). A value of FALSE (0) indicates big-endian byte ordering, and
TRUE (1) indicates little-endian byte ordering. The byte order for fragment
messages must match the byte order of the initial message that the fragment
extends.

The second least significant bit indicates whether or not more framents follow. A
value of FALSE (0) indicates this message is the last fragment, and TRUE (1)
indicates more fragments follow this message.

The most significant 6 bits are reserved. These 6 bits must have value 0 for GIOP
version 1.1 and 1.2.

• message_type indicates the type of the message, according to Table 15-8; these
correspond to enum values of type MsgType.

• message_size contains the number of octets in the message following the
message header, encoded using the byte order specified in the byte order bit (the
least significant bit) in the flags field (or using the byte_order field in GIOP 1.0). It
refers to the size of the message body, not including the 12-byte message header.
This count includes any alignment gaps. The use of a message size of 0 with a
Request, LocateRequest, Reply, or LocateReply message is reserved for
future use.

For GIOP version 1.2, if the second least significant bit of Flags is 1, the sum of
the message_size value and 12 must be evenly divisible by 8.

15-32 CORBA V2.3 June 1999

15

15.4.2 Request Message

Request messages encode CORBA object invocations, including attribute accessor
operations, and CORBA::Object operations get_interface and
get_implementation. Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body

15.4.2.1 Request Header

The request header is specified as follows:

module GIOP { // IDL extended for version 1.1 and 1.2

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
Principal requesting_principal;

};

// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;

 octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
Principal requesting_principal;

};

// GIOP 1.2
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

CORBA V2.3 GIOP Message Formats June 1999 15-33

15

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: sequence <octet> object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;
string operation;
IOP::ServiceContextList service_context;
// Principal not in GIOP 1.2

};
};

The members have the following definitions:

• request_id is used to associate reply messages with request messages (including
LocateRequest messages). The client (requester) is responsible for generating
values so that ambiguity is eliminated; specifically, a client must not re-use
request_id values during a connection if: (a) the previous request containing that
ID is still pending, or (b) if the previous request containing that ID was canceled
and no reply was received. (See the semantics of the “CancelRequest Message” on
page 15-38).

• The lowest order bit of response_flags is set to 1 if a reply message is expected
for this request. If the operation is not defined as oneway, and the request is not
invoked via the DII with the INV_NO_RESPONSE flag set, response_flags
must be set to \x03.

If the operation is defined as oneway, or the request is invoked via the DII with the
INV_NO_RESPONSE flag set, response_flags may be set to \x00 or \x01.
Asking for a reply gives the client ORB an opportunity to receive
LOCATION_FORWARD responses and replies that might indicate system
exceptions. When this flag is set to \x01 for a oneway operation, receipt of a reply
does not imply that the operation has necessarily completed.

• reserved is always set to 0 in GIOP 1.1. These three octets are reserved for future
use.

• For GIOP 1.0 and 1.1, object_key identifies the object which is the target of the
invocation. It is the object_key field from the transport-specific GIOP profile (e.g.,
from the encapsulated IIOP profile of the IOR for the target object). This value is
only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, target identifies the object which is the target of the invocation. The
possible values of the union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g.,
from the encapsulated IIOP profile of the IOR for the target object). This value is
only meaningful to the server and is not interpreted or modified by the client.

15-34 CORBA V2.3 June 1999

15

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR
by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The
selected_profile_index indicates the transport-specific GIOP profile that was
selected by the client ORB.

• operation is the IDL identifier naming, within the context of the interface (not a
fully qualified scoped name), the operation being invoked. In the case of attribute
accessors, the names are _get_<attribute> and _set_<attribute>. The case of
the operation or attribute name must match the case of the operation name specified
in the OMG IDL source for the interface being used.

In the case of CORBA::Object operations that are defined in the CORBA Core
(Section 4.3, “Object Reference Operations,” on page 4-8) and that correspond to
GIOP request messages, the operation names are _interface, _is_a,
_non_existent, and _get_domain_managers.

For GIOP 1.2 and later versions, only the operation name _non_existent shall be
used.

The correct operation name to use for GIOP 1.0 and 1.1 is _non_existent. Due to
a typographical error in CORBA 2.0, 2.1, and 2.2, some legacy implementations of
GIOP 1.0 and 1.1 respond to the operation name _not_existent. For maximum
interoperability with such legacy implementations, new implementations of GIOP
1.0 and 1.1 may wish to respond to both operation names, _non_existent and
_not_existent.

• service_context contains ORB service data being passed from the client to the
server, encoded as described in Section 13.6.7, “Object Service Context,” on
page 13-22.

• requesting_principal contains a value identifying the requesting principal. It is
provided to support the BOA::get_principal operation. The usage of the
requesting_principal field is deprecated for GIOP versions 1.0 and 1.1. The field
is not present in the request header for GIOP version 1.2.

15.4.2.2 Request Body

In GIOP versions 1.0 and 1.1, request bodies are marshaled into the CDR
encapsulation of the containing Message immediately following the Request Header. In
GIOP version 1.2, the Request Body is always aligned on an 8-octet boundary. The fact
that GIOP specifies the maximum alignment for any primitive type is 8 guarantees that
the Request Body will not require remarshaling if the Message or Request header are
modified. The data for the request body includes the following items encoded in this
order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

CORBA V2.3 GIOP Message Formats June 1999 15-35

15

• An optional Context pseudo object, encoded as described in Section 15.3.5.4,
“Context,” on page 15-28. This item is only included if the operation’s OMG IDL
definition includes a context expression, and only includes context members as
defined in that expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout long p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
long p; // ... to the rightmost

};

15.4.3 Reply Message

Reply messages are sent in response to Request messages if and only if the response
expected flag in the request is set to TRUE. Replies include inout and out parameters,
operation results, and may include exception values. In addition, Reply messages may
provide object location information. In GIOP versions 1.0 and 1.1, replies flow only
from server to client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

15.4.3.1 Reply Header

The reply header is defined as follows:

module GIOP { // IDL extended for 1.2

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 { // Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 { // Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

15-36 CORBA V2.3 June 1999

15

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#else
// GIOP 1.2
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM,// new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP:ServiceContextList service_context;

};
#endif // GIOP_1_2
};

The members have the following definitions:

• request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.

• reply_status indicates the completion status of the associated request, and also
determines part of the reply body contents. If no exception occurred and the
operation completed successfully, the value is NO_EXCEPTION and the body
contains return values. Otherwise the body

• contains an exception, or

• directs the client to reissue the request to an object at some other location, or

• directs the client to supply more addressing information.

• service_context contains ORB service data being passed from the server to the
client, encoded as described in Section 15.2.3, “GIOP Message Transfer,” on
page 15-4.

15.4.3.2 Reply Body

In GIOP version 1.0 and 1.1, reply bodies are marshaled into the CDR encapsulation of
the containing Message immediately following the Reply Header. In GIOP version 1.2,
the Reply Body is always aligned on an 8-octet boundary. The fact that GIOP specifies
the maximum alignment for any primitive type is 8 guarantees that the ReplyBody will
not require remarshaling if the Message or the Reply Header are modified. The data for
the reply body is determined by the value of reply_status. There are the following
types of reply body:

CORBA V2.3 GIOP Message Formats June 1999 15-37

15

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were
a structure holding first any operation return value, then any inout and out
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

• If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION,
then the body contains the exception that was raised by the operation, encoded as
described in Section 15.3.5.5, “Exception,” on page 15-28. (Only the user-defined
exceptions listed in the operation’s OMG IDL definition may be raised.)

When a GIOP Reply message contains a `reply_status' value of
SYSTEM_EXCEPTION, the body of the Reply message conforms to the following
structure:

module GIOP { // IDL
struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;
unsigned long completion_status;
};

};

The high-order 20 bits of minor_code_value contain a 20-bit “Vendor Minor
Codeset ID”(VMCID); the low-order 12 bits contain a minor code. A vendor (or
group of vendors) wishing to define a specific set of system exception minor codes
should obtain a unique VMCID from the OMG, and then define up to 4096 minor
codes for each system exception. Any vendor may use the special VMCID of zero
(0) without previous reservation, but minor code assignments in this codeset may
conflict with other vendor's assignments, and use of the zero VMCID is officially
deprecated.

Note – OMG standard minor codes are identified with the 20 bit VMCID \x4f4d0.
This appears as the characters ‘O’ followed by the character ‘M’ on the wire, which is
defined as a 32-bit constant called OMGVMCID \x4f4d0000 (see Section 3.17.2,
“Standard Minor Exception Codes,” on page 3-58) so that allocated minor code
numbers can be or-ed with it to obtain the minor_code_value.

• If the reply_status value is LOCATION_FORWARD, then the body contains an
object reference (IOR) encoded as described in “Object References” on page 15-28.
The client ORB is responsible for re-sending the original request to that (different)
object. This resending is transparent to the client program making the request.

• The usage of the reply_status value LOCATION_FORWARD_PERM behaves
like the usage of LOCATION_FORWARD, but when used by a server it also
provides an indication to the client that it may replace the old IOR with the new
IOR. Both the old IOR and the new IOR are valid, but the new IOR is preferred for
future use.

15-38 CORBA V2.3 June 1999

15

• If the reply_status value is NEEDS_ADDRESSING_MODE then the body
contains a GIOP::AddressingDisposition. The client ORB is responsible for re-
sending the original request using the requested addressing mode. The resending is
transparent to the client program making the request.

For example, the reply body for a successful response (the value of reply_status is
NO_EXCEPTION) to the Request example shown on page 15-35 would be equivalent
to the following structure:

struct example_reply {
double return_value; // return value
string str;
long p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not
absolute. Specifically, when a new object reference is received in a
LOCATION_FORWARD Reply or in a LocateReply message, the object_key
field embedded in the new object reference’s GIOP profile may not have the same
value as the object_key in the GIOP profile of the original object reference. For
details on location forwarding, see Section 15.6, “Object Location,” on page 15-46.

15.4.4 CancelRequest Message

CancelRequest messages may be sent, in GIOP versions 1.0 and 1.1, only from
clients to servers. CancelRequest messages notify a server that the client is no
longer expecting a reply for a specified pending Request or LocateRequest
message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

15.4.4.1 Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

unsigned long request_id;
};

};

The request_id member identifies the Request or LocateRequest message to
which the cancel applies. This value is the same as the request_id value specified in
the original Request or LocateRequest message.

CORBA V2.3 GIOP Message Formats June 1999 15-39

15

When a client issues a cancel request message, it serves in an advisory capacity only.
The server is not required to acknowledge the cancellation, and may subsequently send
the corresponding reply. The client should have no expectation about whether a reply
(including an exceptional one) arrives.

15.4.5 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object reference:

• whether the object reference is valid,

• whether the current server is capable of directly receiving requests for the object
reference, and if not,

• to what address requests for the object reference should be sent.

Note that this information is also provided through the Request message, but that
some clients might prefer not to support retransmission of potentially large messages
that might be implied by a LOCATION_FORWARD status in a Reply message. That
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader

15.4.5.1 LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL extended for version 1.2

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
sequence <octet> object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
};

The members are defined as follows:

15-40 CORBA V2.3 June 1999

15

• request_id is used to associate LocateReply messages with LocateRequest
ones. The client (requester) is responsible for generating values; see Section 15.4.2,
“Request Message,” on page 15-32 for the applicable rules.

• For GIOP 1.0 and 1.1, object_key identifies the object being located. In an IIOP
context, this value is obtained from the object_key field from the encapsulated
IIOP::ProfileBody in the IIOP profile of the IOR for the target object. When GIOP
is mapped to other transports, their IOR profiles must also contain an appropriate
corresponding value. This value is only meaningful to the server and is not
interpreted or modified by the client.

• For GIOP 1.2, target identifies the object being located. The possible values of this
union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g.,
from the encapsulated IIOP profile of the IOR for the target object). This value is
only meaningful to the server and is not interpreted or modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR
by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The
selected_profile_index indicates the transport-specific GIOP profile that was
selected by the client ORB.

See Section 15.6, “Object Location,” on page 15-46 for details on the use of
LocateRequest.

15.4.6 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages. In GIOP versions 1.0 and 1.1 the LocateReply message
is only sent from the server to the client.

A LocateReply message has three elements, encoded in this order:

1. A GIOP message header

2. A LocateReplyHeader

3. The locate reply body

15.4.6.1 Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL extended for GIOP 1.2
#ifndef GIOP_1_2

// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

CORBA V2.3 GIOP Message Formats June 1999 15-41

15

// GIOP 1.0
struct LocateReplyHeader_1_0 {// Renamed from LocateReplyHeader

unsigned long request_id;
LocateStatusType locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
#endif // GIOP_1_2
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains the
same request_id value as the corresponding LocateRequest message.

• locate_status - the value of this member is used to determine whether a
LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding
LocateRequest message is unknown to the server; no body exists.

• OBJECT_HERE - this server (the originator of the LocateReply message) can
directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD and OBJECT_FORWARD_PERM - a LocateReply
body exists.

• LOC_SYSTEM_EXCEPTION - a LocateReply body exists.

• LOC_NEEDS_ADDRESSING_MODE - a LocateReply body exists.

15.4.6.2 LocateReply Body

The body is empty, except for the following cases:

• If the LocateStatus value is OBJECT_FORWARD or
OBJECT_FORWARD_PERM, the body contains an object reference (IOR) that
may be used as the target for requests to the object specified in the

15-42 CORBA V2.3 June 1999

15

LocateRequest message. The usage of OBJECT_FORWARD_PERM behaves
like the usage of OBJECT_FORWARD, but when used by the server it also
provides an indication to the client that it may replace the old IOR with the new
IOR. When using OBJECT_FORWARD_PERM, both the old IOR and the new
IOR are valid, but the new IOR is preferred for future use.

• If the LocateStatus value is LOC_SYSTEM_EXCEPTION, the body contains a
marshaled GIOP::SystemExceptionReplyBody.

• If the LocateStatus value is LOC_NEEDS_ADDRESSING_MODE then the
body contains a GIOP::AddressingDisposition. The client ORB is responsible
for re-sending the LocateRequest using the requested addressing mode.

15.4.7 CloseConnection Message

CloseConnection messages are sent only by servers in GIOP protocol versions 1.0
and 1.1. They inform clients that the server intends to close the connection and must
not be expected to provide further responses. Moreover, clients know that any requests
for which they are awaiting replies will never be processed, and may safely be reissued
(on another connection). In GIOP version 1.2 both sides of the connection may send
the CloseConnection message.

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage of CloseConnection messages, see Section 15.5.1,
“Connection Management,” on page 15-44.

15.4.8 MessageError Message

The MessageError message is sent in response to any GIOP message whose version
number or message type is unknown to the recipient or any message received whose
header is not properly formed (e.g., has the wrong magic value). Error handling is
context-specific.

The MessageError message consists only of the GIOP message header, identifying
the message type.

15.4.9 Fragment Message

This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message that
has the more fragments bit set to TRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this header
is the message_size field, a 32-bit unsigned number giving the number of bytes in
the message following the header. Unfortunately, when actually constructing a GIOP
Request or Reply message, it is sometimes impractical or undesirable to ascertain the

CORBA V2.3 GIOP Message Transport June 1999 15-43

15

total size of the message at the stage of message construction where the message
header has to be written. GIOP 1.1 provides an alternative indication of the size of the
message, for use in those cases.

In GIOP 1.1, a Request or Reply message can be broken into multiple fragments. In
GIOP 1.2, a Request, Reply, LocateRequest, or LocateReply message can be
broken into multiple fragment. The first fragment is a regular message (e.g., Request
or Reply) with the more fragments bit in the flags field set to TRUE. This initial
fragment can be followed by one or more messages using the fragment messages. The
last fragment shall have the more fragment bit in the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of the
message being sent. In this case, the server should assume no more fragments will
follow.

Note – A GIOP client which fragments the header of a Request message before
sending the request ID, may not send a CancelRequest message pertaining to that
request ID and may not send another Request message until after the request ID is
sent.

A primitive data type of 8 bytes or smaller should never be broken across two
fragments.

For GIOP version 1.2, the total length (including the message header) of a fragment
other than the final fragment of a fragmented message are required to be a multiple of
8 bytes in length, allowing bridges to defragment and/or refragment messages without
having to remarshal the encoded data to insert or remove padding.

For GIOP version 1.2, a fragment header is included in the message, immediately after
the GIOP message header and before the fragment data. The request ID, in the
fragment header, has the same value as that used in the original message associated
with the fragment.

module GIOP {//IDL extension for GIOP 1.2
// GIOP 1.2
struct FragmentHeader_1_2 {

unsigned long request_id;
};

};

15.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols. The
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the scope
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowledgment of delivery is available.

15-44 CORBA V2.3 June 1999

15

• The transport can be viewed as a byte stream. No arbitrary message size limitations,
fragmentation, or alignments are enforced.

• The transport provides some reasonable notification of disorderly connection loss. If
the peer process aborts, the peer host crashes, or network connectivity is lost, a
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the general
connection model of TCP/IP. Specifically, an agent (described herein as a server)
publishes a known network address in an IOR, which is used by the client when
initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests to
connect (i.e., it listens for connections in TCP/IP terms). Another agent that knows the
address (called a client) can attempt to initiate connections by sending connect requests
to the address. The listening server may accept the request, forming a new, unique
connection with the client, or it may reject the request (e.g., due to lack of resources).
Once a connection is open, either side may close the connection. (See Section 15.5.1,
“Connection Management,” on page 15-44 for semantic issues related to connection
closure.) A candidate transport might not directly support this specific connection
model; it is only necessary that the transport’s model can be mapped onto this view.

15.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information found in
an object reference (IOR) for an object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any
implications for ORB or application architectures.

In GIOP protocol versions 1.0 and 1.1, connections are not symmetrical. Only clients
can send Request, LocateRequest, and CancelRequest messages over a
connection, in GIOP 1.0 and 1.1. In all GIOP versions, a server can send Reply,
LocateReply, and CloseConnection messages over a connection; however, in GIOP
1.2 the client can send them as well. Either client or server can send MessageError
messages, in GIOP 1.0 and 1.1.

Only GIOP messages are sent over GIOP connections.

Request IDs must unambiguously associate replies with requests within the scope and
lifetime of a connection. Request IDs may be re-used if there is no possibility that the
previous request using the ID may still have a pending reply. Note that cancellation
does not guarantee no reply will be sent. It is the responsibility of the client to generate
and assign request IDs. Request IDs must be unique among both Request and
LocateRequest messages.

CORBA V2.3 GIOP Message Transport June 1999 15-45

15

15.5.1.1 Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect.

For GIOP versions 1.0, and 1.1:

• Orderly shutdown is initiated by servers sending a CloseConnection message, or
by clients just closing down a connection.

• Orderly shutdown may be initiated by the client at any time.

• A server may not initiate shutdown if it has begun processing any requests for
which it has not either received a CancelRequest or sent a corresponding reply.

• If a client detects connection closure without receiving a CloseConnection
message, it must assume an abortive disconnect has occurred, and treat the
condition as an error.

For GIOP Version 1.2:

• Orderly shutdown is initiated by either the originating client ORB (connection
initiator) or by the server ORB (connection responder) sending a
CloseConnection message

• If the ORB sending the CloseConnection is a server, or bidirectional GIOP is in
use, the sending ORB must not currently be processing any Requests from the other
side.

• The ORB which sends the CloseConnection must not send any messages after
the CloseConnection.

• If either ORB detects connection closure without receiving a CloseConnection
message, it must assume an abortive disconnect has occurred, and treat the
condition as an error.

• If bidirectional GIOP is in use, the conditions of Section 15.8, “Bi-Directional
GIOP,” on page 15-52 apply.

For all uses of CloseConnection (for GIOP versions 1.0, 1.1, and 1.2):

• If there are any pending non-oneway requests which were initiated on a connection
by the ORB shutting down that connection, the connection-peer ORB should
consider them as canceled.

• If an ORB receives a CloseConnection message from its connection-peer ORB, it
should assume that any outstanding messages (i.e., without replies) were received
after the connection-peer ORB sent the CloseConnection message, were not
processed, and may be safely resent on a new connection.

• After issuing a CloseConnection message, the issuing ORB may close the
connection. Some transport protocols (not including TCP) do not provide an
“orderly disconnect” capability, guaranteeing reliable delivery of the last message
sent. When GIOP is used with such protocols, an additional handshake needs to be
provided as part of the mapping to that protocol's connection mechanisms, to
guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

15-46 CORBA V2.3 June 1999

15

15.5.1.2 Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optimize resource usage
by re-using connections, if it wishes. If not, the client may open a new connection for
each active object supported by the server, although this behavior should be avoided.

15.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRequest, and
CancelRequest messages. Connections are not fully symmetrical.

Clients may have multiple pending requests. A client need not wait for a reply from a
previous request before sending another request.

Servers may reply to pending requests in any order. Reply messages are not required
to be in the same order as the corresponding Requests.

The ordering restrictions regarding connection closure mentioned in Connection
Management, above, are also noted here. Servers may only issue CloseConnection
messages when Reply messages have been sent in response to all received Request
messages that require replies.

15.6 Object Location

The GIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol features
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following
roles with respect to a particular object reference:

• The agent may be able to accept object requests directly for the object and return
replies. The agent may or may not own the actual object implementation; it may be
an Inter-ORB bridge that transforms the request and passes it on to another process
or ORB. From GIOP’s perspective, it is only important that requests can be sent
directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead
as a location service. Any Request messages sent to the agent would result in
either exceptions or replies with LOCATION_FORWARD status, providing new
addresses to which requests may be sent. Such agents would also respond to
LocateRequest messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

CORBA V2.3 Object Location June 1999 15-47

15

• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time (perhaps during the same
connection).

Agents are not required to implement location forwarding mechanisms. An agent can
be implemented with the policy that a connection either supports direct access to an
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return
LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT
status, and never OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with
LOCATION_FORWARD status, since any ORB may choose to implement a location
service. Whether a client chooses to send LocateRequest messages is at the
discretion of the client. For example, if the client routinely expected to see
LOCATION_FORWARD replies when using the address in an object reference, it
might always send LocateRequest messages to objects for which it has no recorded
forwarding address. If a client sends LocateRequest messages, it should be prepared
to accept LocateReply messages.

A client shall not make any assumptions about the longevity of object addresses
returned by LOCATION_FORWARD (OBJECT_FORWARD) mechanisms. Once a
connection based on location-forwarding information is closed, a client can attempt to
reuse the forwarding information it has, but, if that fails, it shall restart the location
process using the original address specified in the initial object reference.

For GIOP version 1.2, the usage of LOCATION_FORWARD_PERM
(OBJECT_FORWARD_PERM) behaves like the usage of LOCATION_FORWARD
(OBJECT_FORWARD), but when used by the server it also provides an indication to
the client that it may replace the old IOR with the new IOR. When using
LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM), both the old IOR
and the new IOR are valid, but the new IOR is preferred for future use.

Even after performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address that a client should expect to
continue working reliably is the one in the initial object reference. If an invocation
using that address returns UNKNOWN_OBJECT, the object should be deemed non-
existent.

In general, the implementation of location forwarding mechanisms is at the discretion
of ORBs, available to be used for optimization and to support flexible object location
and migration behaviors.

15-48 CORBA V2.3 June 1999

15

15.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP4. Specific APIs for libraries
supporting TCP/IP may vary, so this discussion is limited to an abstract view of
TCP/IP and management of its connections. The mapping of GIOP message transfer to
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or 1.1. An IIOP 1.1 client must support
GIOP 1.1, and may also support GIOP 1.0. An IIOP 1.1 server must support processing
both GIOP 1.0 and GIOP 1.1 messages.

IIOP 1.2 can be based on either GIOP minor versions 1.0, 1.1, or 1.2. An IIOP 1.2
client must support GIOP 1.2, and may also support lesser GIOP minor versions. An
IIOP 1.2 server must also support processing messages with all lesser GIOP versions.

15.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for objects
(i.e., servers) publish TCP/IP addresses in IORs, as described in “IIOP IOR Profiles”
on page 15-49. A TCP/IP address consists of an IP host address, typically represented
by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing an object’s services must initiate a connection with the address
specified in the IOR, with a connect request.

The listening server may accept or reject the connection. In general, servers should
accept connection requests if possible, but ORBs are free to establish any desired
policy for connection acceptance (e.g., to enforce fairness or optimize resource usage).

Once a connection is accepted, the client may send Request, LocateRequest, or
CancelRequest messages by writing to the TCP/IP socket it owns for the connection.
The server may send Reply, LocateReply, and CloseConnection messages by
writing to its TCP/IP connection. In GIOP 1.2, the client may send the
CloseConnection message, and if BiDirectional GIOP is in use, the client may also
send Reply and LocateReply messages.

After receiving a CloseConnection message, an ORB must close the TCP/IP
connection. After sending a CloseConnection, an ORB may close the TCP/IP
connection immediately, or may delay closing the connection until it receives an
indication that the other side has closed the connection. For maximum interoperability
with ORBs using TCP implementations which do not properly implement orderly
shutdown, an ORB may wish to only shutdown the sending side of the connection, and
then read any incoming data until it receives an indication that the other side has also
shutdown, at which point the TCP connection can be closed completely.

4. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specifica-
tion,” RFC-793, Information Sciences Institute, September 1981

CORBA V2.3 Internet Inter-ORB Protocol (IIOP) June 1999 15-49

15

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations
between clients and servers if both sides of a connection send large amounts of data on
a connection (or two different connections between the same processes) and do not
read incoming data. Both processes may block on write operations, and never resume.
It is the responsibility of both clients and servers to avoid creating deadlock by reading
incoming messages and avoiding blocking when writing messages, by providing
separate threads for reading and writing, or any other workable approach. ORBs are
free to adopt any desired implementation strategy, but should provide robust behavior.

15.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-ORB
Protocol, have the following form:

module IIOP { // IDL extended for version 1.1 and 1.2
struct Version {

 octet major;
 octet minor;
 };

struct ProfileBody_1_0 {// renamed from ProfileBody
 Version iiop_version;

string host;
 unsigned short port;
 sequence <octet> object_key;

};

struct ProfileBody_1_1 {// also used for 1.2
 Version iiop_version;

string host;
 unsigned short port;
 sequence <octet> object_key;

// Added in 1.1 unchanged for 1.2
 sequence <IOP::TaggedComponent> components;
};

};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher minor
version number by using only the information defined in the lower minor version
protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while
those supporting IIOP version 1.1 or 1.2 use the ProfileBody_1_1 structure. An
instance of one of these structure types is marshaled into an encapsulation octet stream.

15-50 CORBA V2.3 June 1999

15

This encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag
has the value TAG_INTERNET_IOP (as defined earlier).

The version number published in the Tag Internet IIOP Profile body signals the highest
GIOP minor version number that the server supports at the time of publication of the
IOR.

If the major revision number is 1, and the minor revision number is greater than 0, then
the length of the encapsulated profile may exceed the total size of components defined
in this specification for profiles with minor revision number 0. ORBs that support only
revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the
object_key. If the revision of the profile is 1.0, there shall be no extra data in the
profile (i.e., the length of the encapsulated profile must agree with the total size of
components defined for version 1.0).

For Version 1.2 of IIOP, no order of use is prescribed in the case where more than one
TAG Internet IOP Profile is present in an IOR.

The members of IIOP::ProfileBody_1_0 and IOP::ProfileBody_1_1 are defined as
follows:

• iiop_version describes the version of IIOP that the agent at the specified address
is prepared to receive. When an agent generates IIOP profiles specifying a particular
version, it must be able to accept messages complying with the specified version or
any previous minor version (i.e., any smaller version number). The major version
number of this specification is 1; the minor versions defined to date are 0, 1, and 2.
Compliant ORBs must generate version 1.1 profiles, and must accept any profile
with a major version of 1, regardless of the minor version number. If the minor
version number is 0, the encapsulation is fully described by the ProfileBody_1_0
structure. If the minor version number is 1 or 2, the encapsulation is fully described
by the ProfileBody_1_1 structure. If the minor version number is greater than 1,
then the length of the encapsulated profile may exceed the total size of components
defined in this specification for profiles with minor version number 1. ORBs that
support only version 1.1 or 1.2 IIOP profiles must ignore, but preserve, any data in
the profile that occurs after the components member.

Note – As of version 1.2 of GIOP and IIOP and minor versions beyond, the minor
version in the TAG_INTERNET_IOP profile signals the highest minor revision of
GIOP supported by the server at the time of publication of the IOR.

• host identifies the Internet host to which GIOP messages for the specified object
may be sent. In order to promote a very large (Internet-wide) scope for the object
reference, this will typically be the fully qualified domain name of the host, rather
than an unqualified (or partially qualified) name. However, per Internet standards,
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target agent
is listening for connection requests. The agent must be ready to process IIOP
messages on connections accepted at this port.

CORBA V2.3 Internet Inter-ORB Protocol (IIOP) June 1999 15-51

15

• object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the request is
directed. An agent that generates an object key value must be able to map the value
unambiguously onto the corresponding object when routing requests internally.

• components is a sequence of TaggedComponent, which contains additional
information that may be used in making invocations on the object described by this
profile. TaggedComponents that apply to IIOP 1.2 are described below in “IIOP
IOR Profile Components” on page 15-51. Other components may be included to
support enhanced versions of IIOP, to support ORB services such as security, and to
support other GIOPs, ESIOPs, and proprietary protocols. If an implementation puts
a non-standard component in an IOR, it cannot be assured that any or all non-
standard components will remain in the IOR.

The relationship between the IIOP protocol version and component support
conformance requirements is as follows:

• Each IIOP version specifies a set of standard components and the conformance
rules for that version. These rules specify which components are mandatory
presence, which are optional presence, and which can be dropped. A conformant
implementation has to conform to these rules, and is not required to conform to
more than these rules.

• New components can be added, but they do not become part of the versions
conformance rules.

• When there is a need to specify conformance rules which include the new
components, there will be a need to create a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such
addresses are reserved for use in future versions of IIOP.

Also note that at this time no “well-known” port number has been allocated; therefore,
individual agents will need to assign previously unused ports as part of their
installation procedures. IIOP supports such multiple agents per host.

15.7.3 IIOP IOR Profile Components

The following components are part of the IIOP 1.1 and 1.2 conformance. All these
components are optional presence in the IIOP profile and cannot be dropped from an
IIOP 1.1 or 1.2 IOR.

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_SPKM_1_SEC_MECH

15-52 CORBA V2.3 June 1999

15

• TAG_SPKM_2_SEC_MECH

• TAG_KerberosV5_SEC_MECH

• TAG_CSI_ECMA_Secret_SEC_MECH

• TAG_CSI_ECMA_Hybrid_SEC_MECH

• TAG_CSI_ECMA_Public_SEC_MECH

• TAG_INTERNET_IOP

• TAG_MULTIPLE_COMPONENTS

• TAG_JAVA_CODEBASE

The following components are part of the IIOP 1.2 conformance. All these
components are optional presence in the IIOP profile and cannot be dropped from
an IIOP 1.2 IOR.

• TAG_ALTERNATE_IIOP_ADDRESS

• TAG_POLICIES

• TAG_DCE_STRING_BINDING

• TAG_DCE_BINDING_NAME

• TAG_DCE_NO_PIPES

• TAG_DCE_MECH

• TAG_COMPLETE_OBJECT_KEY

• TAG_ENDPOINT_ID_POSITION

• TAG_LOCATION_POLICY

15.8 Bi-Directional GIOP

The specification of GIOP connection management, in GIOP minor versions 1.0 and
1.1, states that connections are not symmetrical. For example, only clients that
initialize connections can send requests, and only servers that accept connections can
receive them.

This GIOP 1.0 and 1.1 restriction gives rise to significant difficulties when operating
across firewalls. It is common for firewalls not to allow incoming connections, except
to certain well-known and carefully configured hosts, such as dedicated HTTP or FTP
servers. For most CORBA-over-the-internet applications it is not practicable to require
that all potential client firewalls install GIOP proxies to allow incoming connections,
or that any entities receiving callbacks will require prior configuration of the firewall
proxy.

An applet, for example, downloaded to a host inside such a firewall will be restricted
in that it cannot receive requests from outside the firewall on any object it creates, as
no host outside the firewall will be able to connect to the applet through the client's
firewall, even though the applet in question would typically only expect callbacks from
the server it initially registered with.

CORBA V2.3 Bi-Directional GIOP June 1999 15-53

15

In order to circumvent this unnecessary restriction, GIOP minor protocol version 1.2
specifies that the asymmetry stipulation above be relaxed in cases where the client and
the server agree on it. In these cases, the client (the applet in the above case) would
still initiate the connection to the server, but any requests from the server on any
objects exported by the client to the server via this connection will be sent back to the
client on this same connection.

The mechanism by which the client and server agree on this capability is as follows:

The client creates an object for exporting to a server.

The client exports the IOR as a parameter of a GIOP Request on the server object. If
the ORB policy permits bi-directional use of a connection, a Request message should
contain an IOP::ServiceContext structure in its Request header, which indicates
that this GIOP connection is bi-directional. The service context may provide additional
information that the server may need to invoke the callback object. To determine
whether an ORB may support bi-directional GIOP a new POA policy has been defined
(Section 15.9, “Bi-directional GIOP policy,” on page 15-55).

Each mapping of GIOP to a particular transport should define a transport-specific bi-
directional service context, and have an IOP::ServiceId allocated by the OMG. It is
recommended that names for this service context follows the pattern
BiDir<protocolname>, where <protocol name> identifies a mapping of GIOP to a
transport protocol (e.g., for IIOP the name is BiDirIIOP). The service context for bi-
directional IIOP is defined in Section 15.8.1, “Bi-Directional IIOP,” on page 15-54.

The server receives the Request. If it recognizes the service context and supports bi-
directional connections, it may send invocations on this object back along the
connection.

The server may not wish to support bi-directionality either due to lack of support for it,
or because it has been configured that way. In this case, it may fall back to initiating a
connection to the object in the usual way.

If a GIOP connection is used bi-directionally, the client should attempt to keep the
connection alive as long as is necessary to complete its object's service to the server. If
the client initiates a new connection it is not foreseen here that the server can use that
connection for requests on the object exported previously.

A server talking to a client on a bi-directional GIOP connection can use any message
type traditionally used by clients only, so it can use Request, LocateRequest,
CancelRequest, MessageError, and Fragment (for GIOP 1.1). Similarly the client
can use message types traditionally used only by servers: Reply, LocateReply,
MessageError, CloseConnection, and Fragment.

CloseConnection messages are a special case however. Either ORB may send a
CloseConnection message, but the conditions in Section 15.5.1, “Connection
Management,” on page 15-44 apply.

Bi-directional GIOP connections modify the behavior of Request IDs. In the GIOP
specification, Section 15.5.1, “Connection Management,” on page 15-44, it is noted
that “Request IDs must unambiguously associate replies with requests within the scope
and lifetime of a connection”. With bi-directional IIOP, the Request ID unambiguously

15-54 CORBA V2.3 June 1999

15

associates replies with requests per connection and per direction, so the same Request
ID can be used for a Request going from client-to-server and for a Request going
from server-to-client, simultaneously.

It should be noted that a single-threaded ORB needs to perform event checking on the
connection, in case a Request from the other endpoint arrives in the window between
it sending its own Request and receiving the corresponding reply; otherwise a client
and server could send Requests simultaneously, resulting in deadlock. If the client
cannot support event checking, it must not indicate that bi-directionality is supported.
If the server cannot support event checking, it must not make callbacks along the same
connection even if the connection indicates it is supported.

A server making a callback to a client cannot specify its own bi-directional service
context – only the client can announce the connection's bi-directionality.

It is possible for a client to masquerade for a callback object, by pretending that a
callback object can be reached over an existing connection to the client. If the server
has doubts in the integrity of the client, it is recommended that bi-directional GIOP not
be used.

15.8.1 Bi-Directional IIOP

The IOP::ServiceContext used to support bi-directional IIOP contains a
BiDirIIOPServiceContext structure as defined below:

// IDL
module IIOP {

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;

struct BiDirIIOPServiceContext {
ListenPointList listen_points;

};
};

The data encapsulated in the BiDirIIOPServiceContext structure which is identified
by the ServiceId BI_DIR_IIOP as defined in Section 13.6.7, “Object Service Context,”
on page 13-22, allows the ORB, which intends to open a new connection in order to
invoke on an object, to look up its list of active client-initiated connections and
examine the structures associated with them, if any. If a host and port pair in a
listen_points list matches a host and port which the ORB intends to open a
connection to, rather than open a new connection to that listen_point, the server may
re-use any of the connections that were initiated by the client on which the listen point
data was received.

CORBA V2.3 Bi-directional GIOP policy June 1999 15-55

15

The host element of the structure should contain whatever values the client may use in
the IORs it creates. The rules for host and port are identical to the rules for the IIOP
IOR ProfileBody_1_1 host and port elements; see Section 15.7.2, “IIOP IOR
Profiles,” on page 15-49. Note that if the server wishes to make a callback connection
to the client in the standard way, it must use the values from the client object's IOR,
not the values from this BiDirIIOPServiceContext structure; these values are only to
be used for bi-directional GIOP support.

The BI_DIR_IIOP service context may be sent by a client at any point in a
connection's lifetime. The listen_points specified therein must supplement any
listen_points already sent on the connection, rather than replacing the existing
points. Typically, when the same client has multiple connections to the same server, the
listen_points will be identical. However, if they differ, they supplement each other
(i.e., any of the listen points received on any of the connections may be used).

If a client supports a secure connection mechanism, such as SECIOP or IIOP/SSL, and
sends a BI_DIR_IIOP service context over an insecure connection, the host and port
endpoints listed in the BI_DIR_IIOP should not contain the details of the secure
connection mechanism if insecure callbacks to the client's secure objects would be a
violation of the client's security policy.

If a client has not set up any mechanism for traditional-style callbacks using a listening
socket, then the port entry in its IOR must be set to the outgoing connection's local
port (as retrieved using the getsockname() sockets API call). The port in the
BI_DIR_IIOP structure must match this value. This will allow multiple clients, all
running in restrictive security modes (such as Java applets) on the same host, all of
them connecting to one server, to each receive callbacks on their correct connection.

15.8.1.1 IIOP/SSL considerations

Bi-directional IIOP can operate over IIOP/SSL (see CORBAservices Chapter 15)
without defining any additions to the IIOP/SSL or the bi-directional GIOP
mechanisms. However, if the client wants to authenticate the server when the client
receives a callback this cannot be done unless the client has already authenticated the
server. This has to be performed during the initial SSL handshake. It is not possible to
do this at any point after the initial handshake without establishing a new SSL
connection (which defeats the purpose of the bi-directional connections).

15.9 Bi-directional GIOP policy

In GIOP protocol versions 1.0 and 1.1, there are strict rules on which side of a
connection can issue what type of messages (for example version 1.0 and 1.1 clients
can not issue GIOP reply messages). However, as documented above, it is sensible to
relax this restriction if the ORB supports this functionality and policies dictate that bi-
directional connection are allowed. To indicate a bi-directional policy, the following is
defined.

15-56 CORBA V2.3 June 1999

15

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};

A BidirectionalPolicyValue of NORMAL states that the usual GIOP restrictions of
who can send what GIOP messages apply (i.e., bi-directional connections are not
allowed). A value of BOTH indicates that there is a relaxation in what party can issue
what GIOP messages (i.e., bi-directional connections are supported). The default value
of a BidirectionalPolicy is NORMAL.

In the absence of a BidirectionalPolicy being passed in the
PortableServer::POA::create_POA operation, a POA will assume a policy value of
NORMAL.

A client and a server ORB must each have a BidirectionalPolicy with a value of
BOTH for bi-directional communication to take place.

To create a BidirectionalPolicy, the ORB::create_policy operation is used.

15.10 OMG IDL

This section contains the OMG IDL for the GIOP and IIOP modules.

15.10.1 GIOP Module

module GIOP { // IDL extended for version 1.1 and 1.2

struct Version {
octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType

Request, Reply, CancelRequest,
LocateRequest, LocateReply,

CloseConnection, MessageError
};

CORBA V2.3 OMG IDL June 1999 15-57

15

#else
// GIOP 1.1
enum MsgType_1_1{

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageHeader_1_0 {// Renamed from MessageHeader

char magic [4];
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

char magic [4];
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2
typedef MessageHeader_1_1 MessageHeader_1_2;

// GIOP 1.0
struct RequestHeader _1_0 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
Principal requesting_principal;

};

// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;

 octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
Principal requesting_principal;

};

15-58 CORBA V2.3 June 1999

15

// GIOP 1.2
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: sequence <octet> object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;
octet reserved[3];
TargetAddress target;
string operation;
// Principal not in GIOP 1.2
IOP::ServiceContextList service_context; // 1.2 change

};

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 {// Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 {// Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#else
// GIOP 1.2
enum ReplyStatusType_1_2 {

NO_EXCEPTION,

CORBA V2.3 OMG IDL June 1999 15-59

15

USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM, // new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP:ServiceContextList service_context; // 1.2 change

};

#endif // GIOP_1_2
 struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;

unsigned long completion_status;
};

struct CancelRequestHeader {
 unsigned long request_id;
};

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
sequence <octet> object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};

#ifndef GIOP_1_2
// GIOP 1.0 and 1.1

enum LocateStatusType_1_0 {// Renamed from LocateStatusType
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {

15-60 CORBA V2.3 June 1999

15

// Renamed from LocateReplyHeader
unsigned long request_id;
LocateStatusType locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;

// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2

enum LocateStatusType_1_2 {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
#endif // GIOP_1_2

// GIOP 1.2
struct FragmentHeader_1_2 {

unsigned long request_id;
};

};

15.10.2 IIOP Module

module IIOP { // IDL extended for version 1.1 and 1.2
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

};

struct ProfileBody_1_1 {// also used for 1.2
Version iiop_version;
string host;

CORBA V2.3 OMG IDL June 1999 15-61

15

unsigned short port;
sequence <octet> object_key;

// Added in 1.1 unchanged for 1.2
sequence <IOP::TaggedComponent> components;

};

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;

struct BiDirIIOPServiceContext {// BI_DIR_IIOP Service Context
ListenPointList listen_points;

};
};

15.10.3 BiDirPolicy Module

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 36;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};

15-62 CORBA V2.3 June 1999

15

