
© Copyright 1993-98 IONA Technologies PLC. White paper - Orbix IIOP Engine Page 1

White Paper

Orbix IIOP Engine

IONA Technologies

Summary

This document provides a brief technical overview of Orbix IIOP Engine from IONA Technologies. Orbix
IIOP Engine facilitates the seamless integration of applications running on the new generation of consumer
devices into CORBA-based distributed systems, thus providing key standards-based connectivity to back-
end control and management systems. Compelling embedded applications can now be built for devices such
as personal digital assistants (PDA), office equipment, mobile communications devices and embedded
control systems.

.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 2

Table of Contents

1. INTRODUCTION 3
1.1 The Orbix IIOP Engine 3

2. OVERVIEW OF INTER-ORB COMMUNICATIONS 5
2.1 Interoperable Object References (IORs) 6

2.2 General Inter-ORB Protocol (GIOP) 6
2.2.1 Transport Management Requirements in GIOP 6
2.2.2 GIOP Message Formats 7
2.2.3 Data Transfer using Common Data Representation (CDR) 8

2.3 Internet Inter-ORB Protocol (IIOP) 8

3. IIOP ENGINE ARCHITECTURE 10
3.1 Structure of the IIOP Engine API 10

3.1.1 Interoperable Object References API 10
3.1.2 General InterORB protocol API 10
3.1.3 Common Data Representation (CDR) Coding 11
3.1.4 Coding IDL Simple Types 11
3.1.5 Coding IDL Constructed Types 12
3.1.6 Internet Inter-ORB Protocol (IIOP) 12

4. IIOP ENGINE PRODUCT FEATURES 13
4.1 IIOP Engine Requirements 13

4.2 Development Environment 13

4.3 Runtime Environment 14
4.3.1 Memory Requirements 14

5. SUMMARY 14

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 3

1. Introduction

Orbix is the market leading solution for building distributed applications. There are deployment environments however,
where basic CORBA compliant connectivity is more suitable than the full object request broker functionality delivered by
Orbix. These environments have particular constraints and requirements, for example, extreme processing environments with
large numbers of transactions per second, or highly customised embedded devices, providing solutions to business operations
like point-of-sale, test and measurement, distribution and manufacturing. All of these have constraints, like severely limited
memory, that prohibit the use of an ORB. Substitute the ORB with the Orbix IIOP Engine on such systems or devices to
enable seamless integration into CORBA-based back-end control and management applications.

The Internet InterORB Protocol (IIOP) has rapidly established itself as the de-facto protocol for distributed and object-oriented
application and component interoperability. In response to the requirements of resource constrained and deeply embedded
environments, IONA Technologies has developed Orbix IIOP Engine, a highly-efficient, low-footprint, highly-portable IIOP
‘engine’, thereby extending CORBA/IIOP interoperability to include these environments. With Orbix IIOP Engine, the
embedded software component is no longer viewed in isolation but rather as an integral part of a distributed application
spanning platforms as diverse as mainframe, desktop, Internet and now embedded systems.

The Orbix IIOP Engine source code can be licensed and used to build an application for deployment in extreme environments
- extreme transaction throughput environment, extreme memory constrained environment - while simultaneously providing
standards-based connectivity to CORBA compliant distributed systems. It is designed to be the connectivity software at the
heart of all small intelligent digital appliances.

1.1 The Orbix IIOP Engine

The CORBA specification defines the General Inter-ORB Protocol (GIOP) for communication between independent Object
Request Broker (ORB) implementations. This protocol defines a general model for communications between independent
ORB implementations - specifically, GIOP defines a set of on-the-wire data representation and message formats which allow
CORBA-compliant applications to communicate with one another.

GIOP does not address communication issues specific to any single transport protocol, but acts as a basis for a range of
interoperability protocols which map GIOP to individual transport layers. In order to guarantee interoperability, CORBA 2.0
specifies that all compliant ORB implementations must support the Internet Inter-ORB protocol, which maps GIOP onto the
TCP/IP transport layer. Consequently, IIOP is a common standard for communications between objects in distributed systems
- a common on-the-wire protocol guarantees that CORBA applications, even if built using ORB implementations from
different vendors, will interoperate.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 4

The Orbix IIOP Engine enables the development of standalone applications which can communicate over GIOP based
protocols with CORBA-compliant components and applications. The data structures and function calls, written in ANSI C,
provide a complete programming interface to the CORBA GIOP. As the name implies, it is primarily intended to support the
GIOP mapping to the TCP/IP transport i.e. IIOP - use of the GIOP interface however allows for support of protocols based on
alternative transports in future versions.

The GIOP-based API imposes no restrictions on the application tasks above the messaging protocol. Consequently the IIOP
Engine is an important tool for a wide range of programmers. For example, IIOP Engine may be used to develop applications
which need to communicate with ORB applications but have no access to an ORB implementation. Other possible uses
include adding support for a GIOP based protocol to a custom-built ORB, or simply taking advantage of a standard message-
level protocol in a distributed environment.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 5

2. Overview of Inter-ORB Communications

In ORB applications, clients communicate with objects which are implemented in servers. The interface to a server object is
defined in the CORBA standard Interface Definition Language (IDL). Clients may access IDL attributes, which define the
object’s state, and invoke IDL operations, which define the object’s behavior.

In order to identify an object in a distributed system, an ORB associates an identifier, called an object reference, with each
object. A server creates objects and makes the object references available for retrieval by other applications. If a client wishes
to communicate with an object, it locates that object by retrieving the associated object reference. CORBA does not define the
format of an object reference, so the structure of this identifier is specific to the ORB implementation which creates it.

The steps required to implement an application may differ between ORBs, but this general conceptual model of an application
is broadly applicable. A key element in ORB interoperability is the problem of applying this model to an environment in
which the client and server are developed above different ORB implementations. The CORBA interoperability specification
addresses this problem.

The figure below illustrates an operation invocation from a client which runs above ORB 1 to a server which runs above ORB
2. The CORBA interoperability specification defines the mechanism which the client uses to locate the server object, the
protocol for establishing contact between the ORBs and the messages and data formats passed between the ORBs:

In more detail, the interoperability specification, of which the GIOP specification is a subset, includes the following features:

• An Interoperable Object Reference (IOR) format. This standard object reference format allows clients to locate objects
created using any compliant ORB.

• A set of inter-ORB message formats. These messages are defined in the GIOP specification and define the acceptable
communications between ORBs. The messages support all the semantics of remote ORB invocations in a standard format.

• A data transfer syntax. Inter-ORB communications require this standard syntax for the transfer of data, including
operation parameters, GIOP message information, and so on. This standard data syntax is defined in the GIOP
specification and is called Common Data Representation (CDR).

The GIOP specification also includes a set of assumptions about the underlying transport layer which makes the protocol a
suitable basis for implementation with a range of transports. However, these assumptions have few implications for

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 6

programmers using an existing GIOP specialization, such as IIOP. The one important exception to this is the assumption that
the transport is connection-oriented. This concept is the basis for inter-ORB transport management in GIOP.

NOTE: It is important to note that there are currently two versions of the GIOP specification - version 1.0 and version 1.1
(1.1 is a superset of 1.0). Although the Orbix IIOP Engine supports both forms of the protocol, the programmer
documentation generally describes version 1.1 only.

2.1 Interoperable Object References (IORs)
The CORBA interoperability specification defines an information structure for IORs which describes a general-purpose IOR
format. This IOR structure is used in specializations of GIOP and in Environment Specific Inter-ORB Protocols (ESIOPS),
such as DCE Common Inter-ORB Protocol. ESIOPs are not based on GIOP and are not supported by the IIOP Engine APIs.

CORBA defines an IDL data structure which represents an IOR. This structure can be viewed in two parts: a generic set of
fields which specify the object type, whether the object is null and the available protocols, and a set of fields which supply
location information for a particular protocol. The fields which contain location information are specific to individual
protocols. Consequently, although the general structure is defined in the highest level of the CORBA interoperability
specification, an object location substructure is defined in each protocol specification. In the case of IIOP, the structure
includes TCP/IP address information which consists of a TCP port number and an IP host address, an object key value which
a server uses to identify an object and an IIOP version number.

2.2 General Inter-ORB Protocol (GIOP)
The GIOP specification consists of three main elements:

• The transport management requirements.

• The GIOP message formats.

• The CDR transfer syntax definition.

In this section, we provide an overview of the specification by examining each of these features in turn.

2.2.1 Transport Management Requirements in GIOP
GIOP makes several assumptions about the nature of the transport layer underlying any specialized protocol. These
assumptions have important consequences for the suitability of candidate transport layers to which GIOP may be mapped.
They also allow the GIOP specification to address transport management issues between ORBs at a high level.

GIOP assumes that the underlying transport is connection-oriented. GIOP transport management is concerned with how
connections between ORBs may be opened, closed and used for communications.

GIOP connections have the following characteristics:

• There are two separate roles in connection usage: clients and servers.

• Clients attempt to open connections to servers. Servers listen for connection attempts.

• Clients and servers may only send specified subsets of the available message types.

• Connection closure may be orderly or abortive. Each type of connection closure is clearly defined.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 7

Note that the only constraint on the sending of inter-ORB messages is the fact that each side of an application may only send
a subset of the GIOP messages. The ordering of GIOP messages is not constrained, so that sequences of meaningful message
transfers may overlap.

2.2.2 GIOP Message Formats
GIOP 1.1 defines eight message formats. These messages define the transfer of client operation invocations and server
responses, and the management of connections between client and server.

Conceptually, GIOP models IDL operation invocations in terms of requests and replies. To invoke an operation a client sends
a request, which encodes the invocation, to the server. The server processes the invocation and sends a reply, including the
operation return value and out or inout parameters, to the client. The figure below illustrates an operation invocation at the
level of requests and replies.

Most of the GIOP messages relate to some aspect of the transfer of requests and replies. Each message has a clear function in
this context and is associated with a specified data structure. ORBs send a GIOP message by transferring the corresponding
data structure across an open GIOP connection.

The data structure associated with a GIOP message takes one of three forms:

• A GIOP message header only.

• A GIOP message header followed by a message header specific to the message type.

• A GIOP message header followed by a specific message header and a message body.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 8

The combination of message headers and body for a message may relate to the status of the message. The data structures
which represent specific message header and message body types are strictly defined in the GIOP specification. The GIOP
message types are shown below:

Message Type Originator Description

Request client Invocation on an IDL operation or attribute

Reply server Invocation response

CancelRequest client Reply to pending Request/LocateRequest no longer
expected

LocateRequest client Probe for location of remote object

LocateReply server Reply to LocateRequest - indicates whether Server can
accept requests or if LOCATE_FORWARD then correct
location.

CloseConnection server Server initiating connection close.

MessageError both Previous message could not be interpreted correctly

Fragment both (GIOP 1.1 only) Request/Reply message fragmented.

2.2.3 Data Transfer using Common Data Representation (CDR)
GIOP defines a transfer syntax known as Common Data Representation (CDR). CDR defines a coding for all IDL data types:
basic types, structured types (including exceptions), object references and pseudo-objects such as TypeCodes. All data sent
across a GIOP connection is encoded using CDR, including the structures which represent GIOP message formats.

The CDR coding for a data type indicates how that type should be represented in an octet stream which can be sent between
communicating systems. Conceptually, an octet stream corresponds to a memory buffer. In CDR, data values are converted to
raw octets and placed consecutively in the octet stream.

All basic types are aligned on their natural boundaries, relative to the start of the octet stream. The IIOP Engine provides a set
of functions which allows the encoding and decoding of each of the IDL basic types. Consequently, when creating
applications using IIOP Engine, it is not necessary to consider the alignment and representation of basic types. The CDR
representations for complex IDL types, such as structured types or pseudo-objects, are defined in terms of their constituent
basic types.

The data coding, alignment and byte-ordering features of CDR allow applications which communicate using GIOP based
protocols to efficiently transfer data in a commonly agreed format. An important aspect of data transfer in a distributed system
is the potential for different byte ordering systems at communicating hosts. There are two potential byte ordering systems:
little-endian and big-endian. In CDR, the architecture of the message sender determines whether the byte ordering is little-
endian or big-endian; it is then the responsibility of the receiver to decode the message according to the byte ordering (CDR
handles this automatically). Thus, machines with common byte ordering may exchange messages without unnecessary byte
swapping. As in the case of data alignment, IIOP Engine hides any complexity associated with byte ordering in CDR.

2.3 Internet Inter-ORB Protocol (IIOP)
With respect to GIOP, IIOP is not a distinct interoperability protocol. IIOP implements GIOP over the TCP/IP transport layer.
IIOP extends the GIOP specification by mapping GIOP connections to TCP/IP socket connections. This mapping is
straightforward and direct, as the GIOP transport assumptions and connection model are based on TCP/IP.

NOTE: There are currently two versions of the IIOP specification - version 1.0 and version 1.1. The version number
associated with a revision of the IIOP specification should not be confused with the version number associated with GIOP.
Version 1.0 of IIOP is entirely based on version 1.0 of GIOP and does not support the updated message definitions of GIOP

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 9

version 1.1. Version 1.1 of IIOP may support all the message formats defined in either version 1.0 or 1.1 of GIOP. However,
the CORBA specification does not require complete compatibility with GIOP version 1.0 message definitions.

The IIOP Engine fully supports both version 1.0 and version 1.1 of IIOP - IIOP Engine applications may use either version
without restrictions. Although IIOP Engine supports both forms of the protocol, this document generally describes version
1.1 only.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 10

3. IIOP Engine Architecture

The IIOP Engine application programming interface (API) is concise and clearly defined. In addition, it has been carefully
designed to map to any specialization of GIOP. Currently, IIOP Engine maps this interface only to the Internet Inter-ORB
Protocol (IIOP).

NOTE: The following is intended to provide a brief overview of the API structure. A full API specification is contained in the
‘Orbix IIOP Engine Programmers Guide’ which is available as part of the product release.

3.1 Structure of the IIOP Engine API
Orbix IIOP Engine supports a clearly structured, concise API. This API abstracts much of the underlying complexity of the
GIOP specification and allows the implementation of GIOP based communications with low development overheads. The
IIOP Engine API can be subdivided into three general categories, each of which addresses a specific area of GIOP
programming:

• The Interoperable Object Reference (IOR) API allows the creation of data structures which represent IORs.

• The General Inter-ORB Protocol (GIOP) API allows the management of connections and transmission of messages
between GIOP clients and servers.

• The Common Data Representation (CDR) API supports the encoding and decoding of IDL data types using CDR.

3.1.1 Interoperable Object References API
The IOR API consists of two elements: a set of data structures which represent an IOR and a set of functions which allows the
creation of these structures. This API also includes some additional functions which support manipulation of the IORs at an
application level, for example when publishing IORs in servers.

The C data structures which represent an IOR are based on the IDL definitions for IORs defined in the CORBA
interoperability specification. As such, these data structures represent general information about objects but include provision
for transport specific object information. The IOR substructure which supports TCP/IP specific information is defined in the
IIOP data structure set.

The main body of functions in the IOR API supports IOR creation. These functions define a simple system for populating an
IOR data structure. In addition to these functions, the API defines a function for de-allocating the memory associated with an
IOR structure and methods for converting IORs to and from string values. These string conversion methods are often useful
when publishing and retrieving IOR information in IIOP Engine applications.

3.1.2 General InterORB protocol API
The GIOP API supports two separate elements of the GIOP specification: GIOP connection management and GIOP message
transfer. Consequently, some of the data types and functions in this API allow connections to be opened, closed and used,
while others allow message creation, sending and receiving.

• the Initialisation, and Connection management element of the GIOP API defines data structures which represent the state
of a client/server connection. These data structures maintain all the information necessary to manage a connection. This
section of the API allows connections to be opened/closed and incoming messages to be read from connections.
Functionality includes the capability to define the action to be taken when multiple profiles (i.e. connection routes) are
provided for the target object and the ability to query current connection status.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 11

• Message transfer functions for creating and sending each of the defined GIOP message types. This includes support for
Fragment messages as defined in the GIOP 1.1 specification - the IIOP Engine supports the sending of Fragment
messages as well as implicit fragmentation of GIOP 1.1 messages. The latter (“auto fragmentation”) is an Engine specific
enhancement which is provided so that the calling application is not required to create and manage Fragment messages.
Instead, Request and Reply messages will be automatically restricted to a given byte length and the Engine will manage
the creation and sending of associated Fragment messages as required.

These functions make complex, low-level coding of GIOP connections unnecessary. The message transfer element of the
GIOP API supports all of the GIOP defined message types - since the IIOP Engine will support both revisions of the GIOP
specification, the relevant revisions are given.

Message type Originator GIOP Versions

Request client 1.0, 1.1

Reply server 1.0, 1.1

CancelRequest client 1.0, 1.1

LocateRequest client 1.0, 1.1

LocateReply server 1.0, 1.1

CloseConnection server 1.0, 1.1

MessageError both 1.0, 1.1

Fragment both 1.1

3.1.3 Common Data Representation (CDR) Coding
The CDR API defines a set of functions for encoding and decoding IDL data types using CDR. Each function encodes or
decodes a single basic IDL type. The encoding or decoding mode depends on the context of the function call and is
determined automatically by IIOP Engine.

These functions hide all the complexity of converting data to CDR for transfer across a GIOP connection, including issues
such as data alignment and byte ordering. Complex IDL types are encoded in CDR in terms of their constituent basic types, so
a series of IIOP Engine function calls can be used to encode or decode a complex type.

3.1.4 Coding IDL Simple Types
For each simple IDL data type, the IIOP Engine supports a single function call which allows the data type to be encoded or
decoded using CDR coding - it is assumed that the developer is familiar with the mapping of these IDL types onto the
respective C-language types. The names of these functions follow a simple naming convention and the function signatures are
similar in structure. For example, the encoding of an IDL short value and subsequent appending to an existing CDR coder
buffer (coder) is accomplished using a single call:

/* C */

CDRCodeShort(&coder, &short_value);

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 12

3.1.5 Coding IDL Constructed Types
The constructed IDL types refer to types which are built up in terms of other types. The CDR API does not provide dedicated
coding functions for these types with the exception of IDL strings and enums. In CDR, constructed types are encoded as a set
of constituent simple types, so a sequence of CDR simple type function calls allows a constructed type to be encoded or
decoded.

It should be noted that CDR assumes that the application decoding an octet stream knows the exact contents of the stream. To
successfully decode a GIOP message it is necessary to have complete knowledge of the IDL code which defines the message,
including the definition of any user data the message contains.

NOTE: Although the CDR Module provides various calls to add new buffers, reset buffer settings and rewind the coder to the
start of the buffer list, it does not allocate or manage buffer space. This is to avoid heap allocation and/or making assumptions
regarding the required (static) space required. Instead, the calling code must provide buffer allocation callbacks. This policy is
also important in order to conform to the tight restrictions on environments such as embedded and real-time systems where
memory allocation restrictions are critical. The Engine is shipped with default source for both an allocation and de-allocation
callback. These are based on a simple malloc/free scheme.

3.1.6 Internet Inter-ORB Protocol (IIOP)
Most of the functionality supported by IIOP Engine is defined by the generic elements of the API. Consequently, much of the
source code in an IIOP Engine application is independent of any particular GIOP specialization. However, the API is not
complete without some elements which are specific to each supported GIOP specialization.

Currently, the only OMG specified mapping of GIOP is IIOP, which maps GIOP to TCP/IP. IIOP Engine defines data
structures which form part of an IIOP IOR, but do not apply to other protocols. Internally, IIOP Engine uses a set of functions
which map the GIOP API to IIOP, but programmers never need to call these functions and rarely require knowledge that they
exist. Applications may however interrogate GIOP state information to determine the current transport specific settings if
needed.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 13

4. IIOP Engine Product Features

4.1 IIOP Engine Requirements
Many applications need to communicate using a CORBA standard interoperability protocol, but do not need a full Object
Request Broker (ORB) implementation or cannot afford the resources associated with an ORB. In order to support efficient
development of such applications, IIOP Engine has the following characteristics:

• Completely standalone. IIOP Engine is implemented as a single C library with no external dependencies beyond the
availability of the appropriate transport layer for a particular application. For example, if an application communicates
using IIOP, then TCP/IP must be available on the application’s target platform.

• Small memory footprint. IIOP Engine is designed to operate in environments with severe memory constraints and the
library has a small memory footprint.

• Deterministic memory usage. The IIOP Engine library does not dynamically allocate or deallocate memory. Instead, the
engine calls out to application code when it needs to obtain or release memory.

• Efficient communications. IIOP Engine uses several programming techniques, such as minimizing the copying of data, to
achieve high performance communications. The IIOP Engine API also provides direct access to underlying transport
layer structures which allow communications to be configured for individual specifications.

These characteristics make IIOP Engine suitable for a wide range of development environments, including those with strict
resource requirements such as real-time and embedded systems.

4.2 Development Environment
The IIOP Engine is implemented in ANSI C and details of the API are provided in a later section. Each Engine application
must include the following header file:

• giop.h - the IIOP Engine header file.

The IIOP engine is provided in binary form - the application must be compiled with an appropriate C compiler and linked
against the following:

• libgiop.a - a C library which contains the complete IIOP Engine API implementation (both GIOP 1.0 and 1.1
supported).

• prottab.o - a C object file which contains the information which IIOP Engine uses internally to map GIOP to specific
specialized protocols.

Part No. OS Processor Compiler

s1306 Solaris 2.5 SPARC SPARCompiler 4.x

s1307 Windows NT Intel x86 VC++ 4.

S1412 HP-UX HP-PA HP ANSI C++

The IIOP Engine release comes complete with

• A Programming Guide with a full description of the API, programming examples and usage scenarios,

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 14

• A demo suite containing sample IIOP engine applications (including required makefiles).

• Full source code for additional functionality and utilities including a message-level ‘snooper’, event-handler and basic
memory management routines, porting to other platforms and swapping out TCP/IP for other transports.

4.3 Runtime Environment
The IIOP Engine is completely stand-alone and has no dependencies on external configuration information (e.g. system
environment variables or configuration files). Therefore applications built on the IIOP engine can be deployed without the
need for administration overhead.

4.3.1 Memory Requirements
Minimal memory overhead is a key requirement of the IIOP engine and it has been optimized to achieve very low footprint
size - the following table indicates IIOP Engine footprint information for some typical deployment environments:

OS Processor Compiler Object Size (Kb) Static Library (Kb)

Solaris 2.x SPARC SPARCompiler 4.x 27 (Shared Library) 34

Windows NT Intel x86 VC++ 4. 15 (DLL) 34

VxWorks Motorola 68K GNU 2.7 14 N/A

QNX Intel x86 Watcom 10.x 14 (Object file) 23

Note: The object size contains additional symbol table information - the final in-memory size will actually be less that the
object size indicated above

5. Summary

There are deployment environments where the use of an ORB is prohibited due to restrictions such as extremes in real-time
transaction throughput or very tight memory constraints. For example, highly customised embedded devices, providing
solutions to business operations like point-of-sale, test and measurement, and distribution and manufacturing, have
traditionally been viewed in isolation. With Orbix IIOP Engine, the embedded software component becomes an integral part
of a distributed application spanning diverse platforms.

Orbix IIOP Engine is a highly-efficient, low-footprint, highly-portable ‘engine' for the Internet InterORB Protocol (IIOP), and
is designed to be the connectivity software at the heart of all deeply embedded systems. Instead of an ORB, developers use the
IIOP Engine to enable seamless integration of these devices into CORBA-based back-end control and management
applications. This gives developers the power to build compelling distributed systems based on current and emerging
intelligent digital devices and appliances.

© Copyright 1993-98 IONA Technologies Plc. White paper - Orbix IIOP Engine Page 15

More information can be obtained from IONA
by several means

IONA TECHNOLOGIES
MAIN OFFICE :

Boston
60 Aberdeen Ave.

Cambridge

MA 02138

USA

Tel : (617) 679 0900

Fax : (617) 679 0910

Dublin
The IONA Building

8-10 Lwr Pembroke

Dublin 2

IRELAND

Tel: + 353 1 6625255

Fax: + 353 1 6625244

Australia
Suite 15, 3rd Floor

189 St George’s Tce

Perth

WA 6000

Tel: + 61 9 322 4222

Fax: + 61 9 322 4221

BRANCH OFFICES :

San Francisco
(415) 949 2776

Washington DC
(703) 748 3110

Germany
+ 49 61 197 711 931

Hong Kong
(852) 2319 2265

In the USA call : 1-800-orbix4u [672 4948]

World Wide Web: http://www.iona.com

Orbix Information : info@iona.com

Orbix is a Registered Trademark of IONA Technologies PLC

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC No patent liability is
assumed with respect to the use of the information contained herein. While every precaution has been taken in the
preparation of this material, IONA Technologies PLC assumes no responsibility for errors or omissions. This publication and
features described herein are subject to change without notice.

The program and information contained herein are licensed only pursuant to a license agreement that contains use, reverse
engineering, disclosure and other restrictions; accordingly, it is “Unpublished — rights reserved under the applicable
copyright laws”.

All other products or services mentioned in this document are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

