Incremental Constraint Checking for XML Documents

Maria Adriana Ab&o'*, Béatrice Boucholy Mirian Halfeld Ferrari,
Dominique Laurertt, and Martin A. Musicante**

! Universig& Frangois Rabelais - LI/Antenne de Blois, France
adriana.abrao@etu.univ-tours.fr , {bouchou, mirian }@univ-tours.fr
2 Universié de Cergy-Pontoise - LIPC, France
dominique.laurent@dept-info.u-cergy.fr
3 Universidade Federal do PagnDepartamento de Inforatica, Brazil
mam@inf.ufpr.br

Abstract. We introduce a method for building an XML constraint validator from

a given set of schema, key and foreign key constraints. The XML constraint val-
idator obtained by our method is a bottom-up tree transducer that is used not only
for checking, in only one pass, the correctness of an XML document but also for
incrementally validating updates over this document. In this way, both the veri-
fication from scratch and the update verification are based on regular (finite and
tree) automata, making the whole process efficient.

1 Introduction

We address the problem of incremental validation of updates performed on an XML
document that respects a set of schema and integrity constriagntsrf a valid XML
document). Given a set of schema and integrity constrdnte/e present a method
that translate® into a bottom-up tree transduckr capable of verifying the validity
of the document. We only address meaningful specifications [EL]ones in which
integrity constraints are consistent with respect to the schema. The aim of this work
is the construction of a transdudgrthat allows incremental validation of updates. In
this paper, we deal mostly with the verification of key and foreign key constraints. The
validation of updates taking into account schema constraints (DTD) is performed by
U exactly as proposed in [5]. Our framework takes into account attributes as well as
elements: details concerning the treatment of attributes are presented in [5, 6]. Here, for
the sake of simplicity, we disregard specificity of attributes.
The main contributions of the paper are:
e A method for generating a validator from a given specification containing schema,
key and foreign key constraints.
e An unranked bottom-up tree transducer, which represents the validator, where syn-
tactic and semantic aspects are well separated.
e Anincremental schema, key and foreign key validation method.
e Anindex tree that allows incremental updates on XML document. This key index
can also be used for efficiently evaluate queries.

* Supported by CAPES (Brazil) BEX0706/02-7
** This work was done while the author was on leave at Univeiincois Rabelais. Supported
by CAPES (Brazil) BEX1851/02-0.

This paper is organized as follows: section 2 gives an overview of the incremental con-
straint checking framework. Section 3 presents our method to build a tree transducer
from a given specification containing a DTD and a set of keys and foreign keys. We

also show how the transducer is used to efficiently verify all the imposed constraints.

Section 4 shows how incremental validation is performed on updates. Section 5 con-
cludes and describes our future research directions.

2 General Overview

An XML document is a structuré composed by an unranked labeled ttead func-
tionstypeandvalue Treet is a mapping : dom(¢t) — X wheredon(t), called the set

of ¢'s positions, is a set of finite strings of positive integers closed under prefixes (see
Fig. 1). We writet(p) = a for p € dom(¢) to indicate that the symbal is the label

in X' associated with the node at positipnThe functiontypg(t, p) indicates the type
(elementattribute or datg) of the node at positiop. The functionvalug’t, p) gives the
value associated with a data node.

Fig. 1 shows part of the labeled tree representing the document used in our exam-
ples. It describes menus and combinations in some French restaurants. Differently from
thea la cartestyle, a combination is a grouping of dishes and drinks, reducing both the
choice and the price for clients. Each node in the tree has a position and a label. Ele-
ments and attributes associated with arbitrary text have a child latdetedin Fig. 1
attribute labels are depicted with a preceding @.

root

o P T,

restaurant restaurant

oL 0 03

@nm nations
000 ‘ 010 ‘ QZAOZLOZZ ’psq\
data data drinl meals desserts combination

0200 0201 0300 0301 0302 0303
wine wineName wineYear Name price

ozooo 02001 02002 02010 /%\ 02012 J ‘ 03010 03020 ‘03030
price name year price data data

(Sancerre) (2000) (Grilled Fish) (30.00)
020000 020010‘ ozoozo‘ 020100 | 020110 | 020120

data data dati data data data
(Sancerre) (2000) (21 00) (Cahors) (2002) (25.00)

Fig. 1. Labeled tre¢ of an XML document

Definition 1. Key and foreign key syntax [8} A key is represented byP, (P’, { P!,

., P™})). A foreign key is represented by, (P}, {P),...,P*})) € K where
K = (P,(P',{P',...,P™}))is akey such thaP = P,. In a key, pathP is called the
context path P’ thetarget pathand P!, ..., P™ thekey pathsThe same applies for a
foreign key, except foP;, ..., P;" that are calledoreign key paths ad

All the paths in the definition above use only the child axes. Context and target paths
should reach element nodes. Key (or foreign key) paths are required to end at a node

associated to a valuee., attribute nodes or elements having just one child of tjga
The next example gives the intuition of the semantics of key and foreign key constraints
over the document of Fig. 1.

Example 1.Let K; = (/restaurant(./menuddrinkswing {./name ./year})) be a key constraint
indicating that, in the context of a restaurant, a wine (the target node) can be uniquely identified
by its name and its year. L&t K, = (/restaurant (./combinationfcombination {./wineName
JwineYeat)) C K be a foreign key constraint indicating that, for each restaurant, a combination
is composed by a wine that should appear in the menu of the restaurant. a

Definition 2. Key and foreign key semanticsAn XML tree 7 satisfies a keyP, (P’,
{Pt ..., P™})) if for each context positiop defined byP the following two con-
ditions hold: () For each target positiop’ reachable fronp via P’ there exists a
unique positionp;, from p’, for eachP"(1 < h < m). (ii) For any target positions
p’ andp”, reachable fronp via P/, whenever the values reached frgfmandp” via
P"(1 < h < m) are equal, thep’ andp” must be the same position. Similarly, an XML
tree7 satisfies a foreign keyPy, (P}, { P4, ..., Pi*})) C K if: (i) it satisfies its asso-
ciated keyK and(ii) each tupler of values, built following path$y/ P}/ P}, ..., P/
P}/ P (in this order), can also be obtained by following the patha®’ /P!, ...,
P/P’/P™ (in this order). O

In the following, we assume an XML tre& and a set of schema and integrity
constraint®D and we surveyi) the validation of7 from scratch which is performed in
only one pass on the XML tree aiitf) the incremental validation of updates or

2.1 Validation from scratch

Our method consists in building a tree transducer capable of expressing all the con-
straints of a given specificatidd. The tree transducer is composed by a bottom-up tree
automata (to verify the syntactic restrictions) and a set of actions defined for each key
and foreign key. These actions manipulate values and are used to verify the semantic
aspects of constraints. The execution of the tree transducer consists in visiting the tree
in a bottom-up mannéy performing, at each node:

A) The verification of schema constraintSchema constraints are satisfied if all posi-
tions of a tree can be associated to a state and if the root is bound to a final state
(defined by the specification). A stajds assigned to a position if the children
of p in ¢ verify the element and attribute constraints established by the specifica-
tion. Roughly, a schema constraint establishes, for a position labelba type,
the number and (for the sub-elements) the ordefsothildren. We assume that the
XML document in Fig. 1 is valid wrt schema constraints (see [5] for details).

B) The verification of key and foreign key constrainits.order to validate key and
foreign key constraints we need to manipulate data values. To this end, we define
the values to be carried up from children to parents in an XML tree. The following
example illustrates how the transducer treats values being carried up for each node.
This treatment depends on the role of the node’s label in the key or foreign key.

4 Notice that it is very easy to perform a bottom-up visit even using SAX [14](with a stack).

Example 2.We assume a tree transducer obtained from specificdignontaining a given
DTD together withK;, F K> of Example 1) and we analyze its execution o¥e(Fig. 1):

1. The tree transducer computes the values associated to all nodes ddtaledfe consider

valug020000) = valug03000) = Sancerreandvalug020010) = valug03001) = 2000
as some of the values computed in this step.

. The tree transducer analyzes the parents ofittia nodes. If they are key or foreign key
nodes, they receive the values computed in step 1. Otherwise, no value is carried up. In our
case, the valu&ancerreis passed to key nod&000 and to foreign key nodé300. The
value2000 is passed to key nod2001 and to foreign key node301.

. The tree transducer passes the values from children to parent until it finds a target node. At
this level the values for each key or foreign key are grouped in a list. lda€e is target
for K1, and as the key is composed by two items, the list contains the tuple (Zdneerre
2000. Similarly, node030 (target node for'K) is associated t¢Sancerre 2000.

. The transducer carries up the lists of values obtained in step 3 until finding a context node.
At a context node of a key, the transducer tests if all the lists are distinct, returning a boolean
value. Similarly, at a context of a foreign key, the transducer tests if all the tuples exist as
values of the referenced key. In our cassstaurantis the context node for botk; and
F K. As context node foliy, it receives several lists, each containing a tuple with the
wine name and year. The test verifies the uniqueness of those tuples. As context node for
F K>, it receives several lists, each containing a tuple with the name and year of a wine
of a combination. The test verifies if each tuple is also a tuple for Key For instance,
(Sancerre2000) that represents a wine in a combination, appears as a wine in the menu of
the restaurant.

. The boolean values computed in step 4 are carried up to thefp@nd F K are satisfied
if the conjunction of the boolean values resultsrire. a

Notice that, at each context node, key and foreign key constraints are verified by

respecting a specific order: only after testing all key constraints, the transducer verifies
foreign key constraints (wrt key values already tested). We recall that the context path

of a foreign key must be the same as the context path of its corresponding key.

2.2 Incremental validation of updates
Let us now consider updates over valid XML trees. To this end, we suppose that:
— Updates are seen as changes to be performed on the XML tree
— Only updates that preserve the validity of the document (with respect to schema,
key and foreign key constraints) are accepted. If the update violates a constraint,
then it is rejected and the XML document remains unchanged.
— The acceptance of an update reliesramemental validationtiests;.e., only the va-
lidity of the part of the original document directly affected by the update is checked.

We focus on two kinds of update operations. The insertion of a subtragposition
p of 7 and the deletion of the subtree rootegh@t 7. To verify if an update should be
accepted, we perform incremental tests, summarized as follows:

1. Schema constraintdle consider the run of the tree transducer on the subtree of
7 composed just by the updated positjgnts siblings and their father. If the state
assigned t@’s father does not change due to the updatg, the tree transducer
maintains the state assignmenpt®father as it was before the update, then schema
constraints are not violated (see [5] for details).

2. Key and foreign key constraint3o facilitate the validation of keys and foreign
keys for an update operation, we keep an index tree of those tupledéfined by
each key. For each key tuple a reference counter is used in order to know how many
times the tuple is used as a foreign key.
The verification of key and foreign key constraints changes according to the update
operation being performed. Firstly we have to find (for each key and foreign key)
the corresponding context nogle concerned by the insertion or the deletion. Then,
in order to insert a subtreg’ at positionp of 7 we should perform the following
tests:(i) verify whetherZ”’ does not contain duplicate key values for congéxtii)
verify whetherZ’ does not contain key values already appearing ifor context
p', (iii) verify whetherZ’ does not contain foreign key values not appearing nor
in 7' neither in7 for contextp’ and (iv) for each key tuple in context’ being
referenced by a foreign key i, increase its reference counter.
Similarly, to delete a subtre&’, rooted at positiorp, from an XML tree7 we
should perform the following tests, for each contgkt (i) verify if 7' contains
only key values that are not referenced by foreign keys (not being deleted):and
for each key tuple in context’ being referenced by a foreign key 7, decrease
its reference counter.

The acceptance of an update over an XML tfeert keys and foreign keys requires
information about key values . Given an XML tree7, the tree transducer is used
once to verify its validity (from scratch). During this first execution of the tree trans-
ducer an index tree, callddeyTreeis built for each key constraink” that should be
respected by. EachkeyTreg is a tree structure that stores the position of each con-
text and target node together with the values associated to each key rnbd&im 2
describes this index structure using the notation of DTDs and Fig. 3 shaeglaee
for key K of Example 1. The next example illustrates the validation of updates.

<IDOCTYPE keyTree[

<IELEMENT keyTree (context*)>

<IATTLIST keyTree nameKey CDATA #REQUIRED>

<IELEMENT context (target+)>

<IATTLIST context pos CDATA #REQUIRED>

<IELEMENT target (key+)>

<IATTLIST target pos CDATA #REQUIRED refCount CDATA #REQUIRED>
<IELEMENT key #PCDATA>]

Fig. 2. DTD specifying structur&eyTree

keyTree
™ P E——

(K1) @pomget\farget

((L) @pos@%mkey @mkey
| \] | |

(0200) (1) (Sancerre) (2000) (0201) (3) (Cahors) (2002)
Fig. 3. KeyTreec, built over the document of Fig. 1
Example 3.Given the XML tree of Fig. 1, we show its incremental verification due to the

insertion of a new wine in the menu of a restaurdre.,(the insertion of a labeled tre at
positionp = 0200 of ¢). Moreover, we consider a specification stating that a posjiitabeled

drinksshould respect the following schema constraint: the concatenation of the labels associated
with p's children composes a word that corresponds to the regular expregsioi.

The verification of the update with respect to schema constraints consiétséonsidering that

the update is performed (without performing it yet) gid verifying if the stateyq,inxs can still

be associated with positid20 (0200's father) by analyzing the schema constraint imposed over
nodes labeledrinks To this end, we build the sequence of states associated 26t children.

The insertion consists of shifting to the right the right siblingg.ofhus, we consider statg,in.
associated to positiorti01 and0202 and we only calculate the state associated with the update
position 0200. As the root oft’ (at position0200) is associated to the staig,»., we obtain

the Wordquine quine quine. This word matches the regular expression,..*. Thus, the update
respects the schema constraints [5].

Now we verify whetherX; andF' K> (Example 1) are preserved by the insertion. As the inserted
subtree contains only one key value, it contains no key violation by itself (no duplicate of key
values). Then we assume that the update is performed (without performing it yet) and we verify
whether the key value being inserted is not in contradiction with those already existing in the
original document. In our case, we suppose that the wine being inserted is identified by the key
tuple (Bordeaux1990). Comparing this value to those stored in KegTree, (Fig. 3), we notice

that no violation exists. The inserted subtree does not contain foreign key values and, thus, we
can conclude that the update is possible with respect to key and foreign key constraints.

As the above tests succeed, the insertion can be performed. The performance of an update implies
changes not only on the XML tree but also on index tlessTres. O

3 Tree Transducers for XML

We first present the definition of our tree transducer. This transducer combines a tree
automaton (expressing schema constraints) with a set of output functions (defining key
and foreign key constraints). In this paper we disregard the specificity or attributes.

Definition 3. Output function: Let D be an infinite (recursively enumerable) domain
and letD* denote the set of all lists of items . Let 7 = (¢, type value) be an XML
tree. Anoutput functionf takes as argumentg:) a tree positiorp € dom(t) and(ii) a
list I of items inD. The result of applying(p,) is a list of items inD. In other words,
f :dom(t) x D* — D*. O

We recall the process described in Example 2: at each node, data values are collected
from children nodes and can be used to perform tests. Output functions are defined to
perform these actions: for the node at positigeach output function takes as param-
eters the list of values coming fromp’s children. One output function is defined for
each key and foreign key.

Definition 4. Unranked bottom-up tree transducer (UTT): AUTT over X andD is
atupled = (Q,X,D,Q, A, I') whereQ is a set of states); C @ is a set of final
states A is a set of transition rules anfd = { f1, ..., f.} is a set of output functions.

Each transition rule imA has the fornu, E — g where(i) a € X; (ii) E is aregular
expression ovef) and(iii) ¢ € Q. Each output function id” has the formf;(p, 1) =’
as in Definition 3. O

Key and foreign key constraints are expressed by output functiofisAs the tree
is to be processed bottom-up, the basic task of output functions is to define the values
that have to be passed to the parent position, during the run.

3.1 Generating constraint validators

Given a specificatiorD = (D,K) whereD is a set of schema constraints akds
composed by a set of keys and foreign keys, we propose a method to transtate
a UTT. In this sense, we present an algorithm to generate a validator from a given
specification. This validator is executed to check the constrairidsfor any XML tree.

Letid = (Q,X,D,Qy, A, I') be a UTT whose transition rules i are obtained
from the translation of a DTDD (part of D). Each output function in" is related
to a finite state automaton that indicates which nodes play a role in keys and foreign
keys. Notice that context, target and key nodes in each/kewr foreign key F K;
are defined in a top-down fashion. In order to identify these nodes using a bottom-up
tree automaton, we must traverse the paths stated by eadk keyforeign keyF K ;
in reverse. If we see paths as regular expressions, then we can associate finite state
automata with them. Paths in reverse are recognized by reversing all the transitions of
these automata [13].

Given a key constraink’; (1 < j < k) or a foreign key constraint’K; (k +
1 < j < n), we use the following notations: for context path, we haveM,; =
(0, X,6;, ¢, Fy); for target pathP;, M} = (07}, X, &}, €}, Fj); for key or foreign key
pathsP} | ... | P;"-’, M} = (07, X,07, €7, Fi'). For the sake of homogeneity, we de-
fine Mr = ({eo, ey}, {root}, {d(eg,ro0t, er)}, e, {es}) as the finite state automaton
recognizing the path formed just by the symbabt. Fig. 4 illustrates the finite state
automata that recognize the pathdsin and F' K, of Example 1 in reverse.
Remark We denote byl/.e the current state of the finite state automatal/, and we
call it aconfiguration

<
@7
.

name year wine restaurant
@ combination restaurant
drinks

combinations

Fig. 4. Automata corresponding to the pathsiof and 'K, in reverse

Algorithm 1 - Key constraints as output functions:

Input A set ofk keys{K; = (P}, (P;,{P}, ...,Pf’”})) |1 <j <k} asetofin—k)
foreign keys{FK; = (P;, (P}, {P},...,P["})) C K | (k+1) < j < n; K isakey}
Output A set of output functions” = {f1,..., fu}.

begin
r=90
for eachK; andF K; do
Build the finite automata/;, M} and M’
UseM;, M} and M}’ to specify the functiory;

I'=Tu{f;}
returnl’
end

Each output functiorf; € I"is specified by the algorithm below:

Algorithm 1.1 - Specification of output functions

Input Automata concerning a kel or a foreign keyF' K.

A positionp and a listl of pairs inD. For each pair, the first element is an automaton

configuration and the second element is a list of values.

Output A list of pairs inD.

begin

Leta:=t(p) //aisthe label of positiop

(1) If a = datathen return [(M".e”, [valu€gt, p)])]

(2) If a is a target label fo¥ or FK
then return [(M'.0" (€', a), check Arity(concat(filteryey(1))))]
Function filters., leaves in the key lists only the values associated to key posi-
tions of K (or F'K). For that purpose, it selects the singletons whose configuration
corresponds to a final state df’. Functionconcat returns the concatenation of all
its argument lists into one list. If the length of the resulting list does not correspond
to the lengthm of K, then functioncheck Arity replaces it by an empty list. For
foreign keys the length is not tested.

(3) If ais a context label for a kek
then return [(M.6(e, a), checkKey(filterigrget(1))]

[trug] if v; ...v,, are all nonempty distinct lists.

wherecheckKey([v1 ... vm]) = { ffalsd otherwise

(4) If a is a context label for a foreign kely K
then return [(M.5(e, a), checkForeign(filteriarget(1))]
[true] if v1...v,, are lists whose values appear
) in the key taking part in the
wherecheckForeign([vi . ..vm]) = definition of F K.
[falsg otherwise.
Remark:In cases (3) and (4) above, functigilter;,,q.: rejects all the values not
belonging to target lists of kel (or foreign keyF'K), i.e., those whose configu-
ration does not correspond to the final statd/6f
(5) If ais the root labethen return [(Mp.e¢, concat(filtercontest(1)))]
Function filter..n:c.: rejects all the values not belonging to context lists (config-
uration different from the final state aff).
(6) In all other cases
(i.e, whena # dataanda is not a target label, nor a context label, nor the root)
return carryUp(l)
where functiorcarryUp is defined as follows:

function carryUp (L : list of pairs)
var result :list of pairs
begin
result—[]
for each ¢ = (M.e,v) in L //* M stands forM, M’ or M"
if §(e, a) = €’ is a transition inM then result— concat(resultj(M.e’, v)])
return result
end

end m|

In cases (1) to (5) the resulting list contains only one pair. A pair is always composed
by:

(A) A configurationM.e where M is one of the finite automata representing paths in
keys, andt is a state ofM. For example, in case (2M1 is M’, the target automaton
for K or FK. This configuration is obtained by performing the first transition at
automatonM’, using the symbodk as input. Notice thai’(¢’,) is a state ofd/’.
Other cases are similar.

(B) A list of values. From data nodes to target nodes the list contains only one value.
From target nodes to context nodes the list contains the values composing a key
(or foreign key). From context nodes to the root the list contains one boolean value
indicating that within a given contexifs” or F'K holds or not.

Notice that for foreign key context level (case (4))K and its associated key have
the same context and the tuples representing the key are computed before those that
represent foreign key' K (sinceK;(1 < j < k) andFK;(k+1 < j < n)). Once
computed, key tuples are storeddey Tres, then foreign key tuples can be checked (as
shown in the next section). At root level (case (5)), we have the boolean values that
were obtained for each subtree rooted at the context level. In case 6, values are carried
up by functioncarryUp. This function selects pairs from children nodes belonging to
key and foreign key paths, by checking configurations in these pairs. The resulting list
can contain more than one pair. If nodes are not concerned by any key or foreign key,
the functioncarryUp does not transmit any value.

3.2 Validating XML documents

The verification of keys and foreign keys are performed simultaneously, in one pass,
together with schema validation, during the execution of the UTT over an XML tree.
Example 4 illustrates such an execution while Definitions 5 and 6 formalize it. The
index keyTrege necessary to perform incremental updates on XML documents, is dy-
namically built. Similarly to the one proposed in [9], it is a tree structure containing
levels for the key name, context, target, key and data nodes as defined in Fig. 2.

Example 4.We consider a specificatidl containingK; andF' K> (Example 1). The finite state
automata associated f6; and F'K» are the ones given in Fig. 4. To verify if the XML tr&e of
Fig. 1 satisfied(; andF K we run the transducef (from D) over7 (recall that/ contains two
output functionsf; and f- defined fromK; and F K- (respectively), following Algorithm 1):

1. Forthe data nodes, each output function returns a singleton list that contains a pair: the initial
configuration of the key (or foreign key) automatbfi’, and the value of the node. Positions
020000 and03000 are data nodes, then we have:

£1(020000, []) = [(M{7 .eo, [Sancerrd)]; f2(03000,[]) = [(M3 .eo, [Sancerrg)].

2. The fathers of data nodes which are key (or foreign key) nodes should carry up the values
received from their children. Thus, each of them executes a first transitiofi'insing each
key (or foreign key) label as input. For each father of a data node which is not a key (or a
foreign key) node, the output function returns an empty list.

For instance, positiof2000 is a key node forK'; and position0300 is a foreign key node
for F K». Then, reading the labelamefrom statee, of M;’, we reach state;, and we carry
up the valueSancerre We obtain a similar result fof' K2 when reading labelineName
£1(02000, [(M7' .eo,[Sancerrd)]) = [(M{ .e1, [Sancerrd)];
12(0300, [(M3.eq, [Sancerrd)]) = [(M3 .e1, [Sancerrd)].
At this stage the construction &kyTreg, starts by taking into account the information
associated to each key node (el@gyTree, [t, 02000] is the subtree rooted &eyand asso-
ciated with the valu&ancerren Fig. 3).

3. For node)200, wineis a target label of; and for noded30, combinationis a target label
of FFK>. In order to transmit only key (or foreign key) values, the output function of a target
label (i) selects those that are preceded by a final state of the key autoM&tpfii) joins
them in a new list, andiii) executes the first transition of the target automatéh In this
way, at a target position the tuple value of a key (or foreign key) is built:

£1(0200, [(M{".e1, [Sancerrg), (M7 .ez, [2000])]) = [(M].e4, [Sancerre2000])];

12(030, [(M3' .e1, [Sancerrg), (M3 .ez, [2000])]) = [(M3.e4, [Sancerre2000])].
The construction okeyTree, continues andéteyTree, [¢,0200] is obtained taking into ac-
count the information available at positioR00. (See subtree rooted @irgetin Fig. 3).

4. The computation continues up to the context, verifying whether the labels visited are rec-
ognized by the target automaton or not and carrying up the key (or foreign key) values. For
instance, we reach statg in M, by reading the labeldrinks’ (Fig. 4):

£1(020, [(M] .e4, [Sancerre2000])]) = [(M].es, [Sancerre2000))];

5. For the nod®, the labelrestaurantis a context label of botlk; andF' K. For K; (respec-
tively F'K>) the output function selects the sublists associated to a final state of the target
automatonM; (respectivelyM;). The output function of<; checks if all the selected sub-
lists are distinct. The output function &K verifies if the selected sublists correspond to
lists of values obtained foK;. In both cases, the output functions return a boolean value
that will be carried up to the root:

f1(0, [(M7.es, [Sancerre2000]), (M7 .es, [Cahors 2002])]) = [(M .es, [trug])];

12(0, [(M3.e5, [Sancerre2000])]) =[(Ma.ez, [true])].
At this point, we haveéeyTreg, [t, 0] represented by the subtree rooteda@ttextin Fig. 3.
Notice that the attributeefCount for tuple (Sancerre 2000 has valuel because at this
context node, the tupléSancerre 2000 exists for foreign key" K. Indeed, at the context
level we increment theefCount of each key tuple that corresponds to a foreign key tuple
obtained at this level. Supposing that the tuf@ahors 2002 appears in three different
combinations (not presented in Fig. 1), we would heef€ount = 3 for it.

6. At the root position the last output function selects the sublists that are preceded by a final
state of the context automatdd and returns all boolean values in these sublists. The con-
struction ofkeyTree, finishes by a label indicating the name of the key (Fig. 3). ad

Definition 5. A run of ¢/ on a finite tree t: Let ¢t be aX-valued tree and/ =
(@Q,%2,D,Qf,A, I') be a UTT. Given the key&7, . . ., K, and foreign keys Ky, 11,

..., FK, arun of Y ontis: (i) atreer : dom(r) — @ such thadom(r) = dom(t);
(i) a functionf : dom(r) — (D*)™ and(iii) k keyTrees.

For each positiom whose children are those at positiéns), ..., p(z — 1) (with
z > 0), we have:

(1) r(p) = ¢ if the following conditions hold:
@) t(p) =ac X.
(b) There exists a transition £ — ¢ in A.
(©) r(p0) = qo, ..., r(p(z = 1)) = g=—1.
(d) The wordgy . . . ¢._1 belongs to the language generatedry

(ii) £(p) =1={f1(p,concatly,... .1l 1)),..., fn(p,concatly,... 1" _;))) with
£(p0) =lo, ..., E(p(z — 1)) = l._1 where eacl; = (I},...,I") is a n-tuple.

(1) for (1 < j < k), keyTreg, [t, p| is constructed using the already computed

keyTreex, [t,p0], ... keyTreg, [t,p(z — 1)], as follows:

(@) Ift(p) is akey label ofK’;, thenkeyTreg, [t, p] is the tree:
<key> ¢(p) = valudt, p0)</key>

(b) Ift(p) is a target label of(;, thenkeyTreg, [t, p] is:
<target pos=p refCount=0> keyTree, [t, p0] .. .keyTree, [t, p(z — 1)]
</target>

(c) If t(p) is a context label oK', thenkeyTreg, [t, p] is:
<context pos=p> keyTree,[t,p0] ... keyTreg, [t, p(z — 1)] </context>
Moreover, ift(p) is a context label of a foreign kel K, then increment the
attributerefCount in the correspondingeyTreg, .

(d) If t(p) is the root label thekeyTree, [t, p| is the tree:
<keyTree nameKey= K;>keyTree, [t,p0]...keyTreg,[t, p(z—1)] </keyTree>

(e) In all other cases, for each kdy;, we definekeyTreg, [t,p] as the forest
composed by all the tred®yTreg, [t, p0] . .. keyTreg [t, p(z — 1)].

Notice that, although thkeyTres are defined in general as forests, for the special
labels mentioned in cases (a) to (d) above, we build a single tree. ad

Definition 6. Validity : An XML tree ¢ is said to be valid with respect to schema con-
straints if there is a successful runi.e., r(e) € Q5. An XML treet is said to be valid
with respect to key and foreign key constraints if the listE(ef contain only the value
true for each key and foreign key. O

Remark that iteri:) of Definition 5 specifies that the output for each position
in the XML tree is a tuple composed by one list for each key (or foreign key) being
verified. Each list; in the tuple is the result of applying the output functindefined
for the jth key or foreign key, over the following arguments:

— p: the position indom(t).

5 The notatiorp(z — 1) indicates the position resulting from the concatenation of the position
and the integet — 1. If z = 0 the positionp has no children.

- concatlg, ...,l7_,):thelist formed by the information carried up from the children

1 Vz—1

of p, concerning thgth key.

At the end of the run over an XML tree, each ki is associated to keyTreek ;
that respects the general schema given by Fig. 2. Attripate stores the target and
context positions for a given key and attribuedCount indicates when a ke is
referenced by a foreign key.

4 Incremental Validation of Updates

We consider two update operations, denoteéhisert(Z , p, 7') anddeletep, T), where
7 and7’ are XML trees ang is a position. Fig. 5 illustrates these operations dii-a
valued tree. Only updates that preserve validity wrt the constraints are accepted.

a € a € a € a €
0 / \ 1 omz 0%3 OA\
b c b c d b m ¢ d b m d
|20 10| ‘30 10‘20‘
e P e p e
(O] (i) (i) @iv)

Fig. 5. (¢) Initial X-valued treef having labelsa (positione), b (position 0) and: (position 1).
(1) Insertion afp = 2. (4i7) Insertion ap = 1. (iv) Deletion atp = 2.

4.1 Incremental key and foreign key validation

Let T = (¢, type, value) be a valid XML treej.e., one satisfying a collection of keys
K; (1 <j<k)andforeignkeyd' K, (k+1) <j <n).Letd = (Q,X,D,Qs, A, T)
be a UTT specifying all the constraints that should be respectéd. bye should con-
sider the execution @f over a subtred” being inserted or deleted.

Given a subtre@” = (¢, type, value), the execution off over7’ gives a tuple:

(@, (l1,... ln), (keyTreg. [t' €], ... keyTreg [t €])) (1)
whereq’ is the state associated to the roottf(ly,...,1,) is a n-tuple of lists and
(keyTreg [t', €], ..., keyTreeg, [t', €]) is a k-tuple containing thkey Tredor each key.
Notice that the n-tuple of lists has two distinct parts. Lists . ., [, represent keys
and listsl,11,...,1, represent foreign keys. Ea¢h(1 < j < n) is a list of pairs,
i.e, eachl; has the fornicy, ..., ¢,,,] where eachy;, is a pair containing an automaton
configuration and a list of values.

When performing an insertion, we want to ensure thahas no “internal” validity
problems (as, for instance, duplicated values £gy). Thus, we defineZ” aslocally
valid if the tuple (1) respects the following conditions: (4&)is a state inQ; (B) for
each list; (1 < j < k) we have:

(i) if the root oft’ is a target position fok; then the number of values inequals the
number of elements composing the key;
(if) if the root of ¢’ is a context position fok; then the list; is [(1Z;.e, [true])];
(iii) if the root of ¢’ is a position above the context positions #6r then the list; is
[c1, ..., cm], where each pair, does not contaifif alse] as its list of values.

Notice that no condition is imposed on foreign keys. A subfféean contain tuple
values referring to a key value appearingfirand not in7").

In the following, we assume that subtrees being inserted in a valid XML tree are
locally valid and we address the problem of evaluating whether an update should be
accepted with respect to key and foreign key constraints. Before accepting an update,
we incrementally verify whether it does not cause any constraint violation. To perform
these tests, we need the context node of a key or foreign key. To this end, we define
procedurdindContexthat computes:

— The context positiop’ for a key K; (or a foreign keyF' K ;) which is an ancestor
of the update positiop in the treet.
— Alist I’ containing the key (or foreign key) values for that context position, consid-
ering values carried up from the subtree being inserted or defeted.
The tests performed for insertion operatiosert(Z,p, 7’) are presented next. Recall
that7 is valid and7” is locally valid.

Algorithm 2 - Incremental tests for update operation insert(T ,p, T')
1. For each list; # [] (1 < j < k) obtained in the execution & over7” for each
key K; do
(a) If pis under a context node @f; then
i. Call findContextg, /;), that returns a context positigh and!’ = [vy, ..., v,].
ii. For each listv in I’ do
If there exists a tuplkvalin keyTreq(j [t, p'] such thakval = v
then the insertion violateg(; and must be rejected
else the insertion respects;.
(b) If p is the context position or it is between the root and a context nodg; of
then the insertion respects’;.
2. Foreachl; # [] ((k+ 1) < j < n) obtained in the execution of over7’ do
(a) CallfindContextg, /;), that returns a context positighandl’ = [v1, ..., v,].
(b) For each listv in I’ do:
If there exists a tuplkvalin thekeyTreg.. such thakval= v
then the insertion respects the foreign kéys;. The reference counter that
corresponds tdval will be incremented at the end of the procedure, if the
insertion is accepted.
else the insertion does not respect the foreign k& ; and must be rejected.
3. If all keys and foreign keys, together with schema constraints [5], are respected
then accept the update and perform the modificatiorn tand allkeyTres.
else reject the update. O

Before performing an insertion, Algorithm 2 tests if we are not adding key dupli-
cates or” and if the new foreign key values correspond to key values. When we refer to
atuple in akeyTreethis tuple is obtained by concatenating the key values found inside
target tags of thikeyTreetaking into account a context positiph. The next example
illustrates an insertion operation with respect to key and foreign key constraints.

b Let I; be the list of pairs obtained foK; or F'K; by the local validity check. Procedure
findContextexecutes the automatavl (composition of)M}’ and M) starting from the con-
figurations inl; and using the labels associated to the ancestors of pogifijn

Example 5.We consider the updaigasert(7", 0200, 7") presented in Example 3. The execution
of U overT" gives the tuple{quine, ([(M].e4, [Bordeaux1990])], []), (keyTreg. [t', €])).

We see thaf ' is locally valid and that the update affects oy . ProcedurdindContexreturns
the context positiop’ = 0 and the list’ = [(Bordeaux1990)]. We compare the tuples ifiwith
those inkeyTree, (Fig. 3) for contextp’ = 0. All these tuples are distinct and thus the insertion
is possible forK;. As no other key is affected, the insertion is accepted. ad

In a similar way, we define incremental tests for the operatieletep, 7). These
tests check if the deletion of a subtree rooted at a positioes not violate constraints,
before actually removing the subtree. The details are given in [1].

5 Conclusions

This paper extends and merges our previous proposals [5, 6]. In [5], we propose an
incremental validation method, but only with respect to schema constraints. In [6] we
just consider the validation from scratch of an XML document associated to only one
key constraint. In the current paper, we deal with incremental validation of updates
taking into account schema constraints together with several key and foreign key con-
straints. Our verification algorithm uses only synthesized values \{alues commu-
nicated from the children to the parents of a tree), making the algorithms suitable for
implementation in any parser generator, or even using SAX [14] or DOM [19].

The algorithms presented here have been implemented using the ASF+SDF meta-
environment [7]. The verification of keys and foreign keys usegTres, which can
also be used for efficiently evaluating queries based on key values.

Validity verification methods for schema constraints have been addressed by [5, 10,
15-18]. The validation of updates is also treated in [10, 17]. In [17], schema constraints
wrt specialized DTDs are considered and incremental validation is performed in time
O(log?(n)), wheren is the size of the document. As shown in [5], in terms of schema
constraints, our incremental validation (wrt DTDs{iém + 1), wherem is the number
of children of the update position.

Key constraints for XML have been recently considered in the literature (for in-
stance, in [2, 4, 6, 8, 9]) and some of their aspects are adopted in XML Schema. In our
paper, the definition of integrity constraints follows the key specification introduced
in [8]. As shown in [11], it is easy to produce examples of integrity constraints that
no XML document (valid wrt a schema) can verify. In our work, we assume key and
foreign key constraints consistent with respect to a given DTD.

In [9] a key validator which works in asymptotic linear time in the size of the docu-
ment is proposed. Our algorithm also has this property. In contrast to our work, in [3, 9]
schema constraints are not considered and foreign keys are not treated in details. In [4]
both schema and integrity constraints are considered in the process of generating XML
documents from relational databases. Although some similar aspects with our approach
can be observed, we place our work in a different context. In fact, we consider the evo-
lution of XML data independently from any other database sources (in this context both
validation and re-validation of XML documents can be required).

We are currently studying the following lines of resear@h:An extension of our
method to deal with other schema specification, for instance XML-Schema and special-
ized DTDs.(i7) An implementation of an XML update language such as UpdateX [12]

in which incremental constraint checking will be integrated. To this end, we shall con-
sider a transaction including several updates and check validity of its result.
Acknowledgements:We would like to thank the anonymous referees for their sugges-
tions to the final version of this paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. A. Abrao, B. Bouchou, M. Halfeld-Ferrari, D. Laurent, and M. A. Musicante. Update
validation for XML in the presence of schema, key and foreign key constraints. Technical
report, Universié Franois Rabelais Blois-Tours-Chinon, 2004 (to appear).

. M. Arenas, W. Fan, and L. Libkin. On verifying consistency of XML specification\@iM

Symposium on Principles of Database Syst2002.

. M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated update management for

XML integrity constraints. InProgramming Language Technologies for XML (PLANX02)
2002.

. M. Benedikt, C-Y Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both types and con-

straints in data integration. In ACM Press, edi®iGMOD, San Diego, CA003.

. B. Bouchou and M. Halfeld Ferrari Alves. Updates and incremental validation of XML

documents. In Springer, editdrhe 9th International Workshop on Database Programming
Languages (DBPL)humber 2921 in LNCS, 2003.

. B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Musicante. Tree automata to verify key

constraints. InNMeb and Databases (WebDEjan Diego, CA, USA, June 2003.

. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling rewrite systems:

The ASF+SDF compilerACM, Transactions on Programming Languages and Syst2fs
2002.

. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C. Tan. Keys for XMWWAN10, May

2-5, 2001.

. Y. Chen, S. B. Davidson, and Y. Zheng. XKvalidator: a constraint validator for XML. In

ACM Press, editorProceedings of the 11th International Conference on Information and
Knowledge Managemeniages 446—452, 2002.

B. Chidlovskii. Using regular tree automata as XML schemad2réc. IEEE Advances in
Digital Libraries ConferenceMay 2000.

W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDsurnal of

the ACM 49(3):368-406, 2002.

G. M. Gargi, J. Hammer, and J. Simeon. An XQuery-based language for processing updates
in XML. In Programming Language Technologies for XML (PLANXQ4904.

J. E. Hopcroft, R. Motwani, and J. D. Ullmaimtroduction to Automata Theory Languages
and ComputationAddison-Wesley Publishing Company, second edition, 2001.

W. S. Means and M. A. Bodidhe Book of SAX: The Simple API for XM\lo Starch Press,
2002.

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers AGM Symposium

on Principles of Database Systepages 11-22, 2000.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema language using formal lan-
guage theory. IfExtreme Markup Language, Montreal, Cana@801.

Y. Papakonstantinou and V. Vianu. Incremental validation of XML document®rdceed-
ings of the International Conference on Database Theory (ICRU)3.

L. Segoufin and V. Vianu. Validating streaming XML documentsAGM Symposium on
Principles of Database Syste2002.

L. Wood, A. Le Hors, V. Apparao, S. Byrne, M. Champion, S. Issacs, |. Jacobs, G. Nicol,
J. Robie, R. Sutor, and C. Wilsorbocument Object Model (DOM) Level 1 Specification
W3C Recommendation, http://www.w3.org/XML, 2000.

