
Incremental Constraint Checking for XML Documents

Maria Adriana Abr̃ao1?, Béatrice Bouchou1, Mı́rian Halfeld Ferrari1,
Dominique Laurent2, and Martin A. Musicante3 ??

1 Universit́e François Rabelais - LI/Antenne de Blois, France
adriana.abrao@etu.univ-tours.fr , {bouchou, mirian }@univ-tours.fr

2 Universit́e de Cergy-Pontoise - LIPC, France
dominique.laurent@dept-info.u-cergy.fr

3 Universidade Federal do Paraná - Departamento de Inforḿatica, Brazil
mam@inf.ufpr.br

Abstract. We introduce a method for building an XML constraint validator from
a given set of schema, key and foreign key constraints. The XML constraint val-
idator obtained by our method is a bottom-up tree transducer that is used not only
for checking, in only one pass, the correctness of an XML document but also for
incrementally validating updates over this document. In this way, both the veri-
fication from scratch and the update verification are based on regular (finite and
tree) automata, making the whole process efficient.

1 Introduction

We address the problem of incremental validation of updates performed on an XML
document that respects a set of schema and integrity constraints (i.e., on a valid XML
document). Given a set of schema and integrity constraintsD, we present a method
that translatesD into a bottom-up tree transducerU capable of verifying the validity
of the document. We only address meaningful specifications [11],i.e., ones in which
integrity constraints are consistent with respect to the schema. The aim of this work
is the construction of a transducerU that allows incremental validation of updates. In
this paper, we deal mostly with the verification of key and foreign key constraints. The
validation of updates taking into account schema constraints (DTD) is performed by
U exactly as proposed in [5]. Our framework takes into account attributes as well as
elements: details concerning the treatment of attributes are presented in [5, 6]. Here, for
the sake of simplicity, we disregard specificity of attributes.
The main contributions of the paper are:
• A method for generating a validator from a given specification containing schema,

key and foreign key constraints.
• An unranked bottom-up tree transducer, which represents the validator, where syn-

tactic and semantic aspects are well separated.
• An incremental schema, key and foreign key validation method.
• An index tree that allows incremental updates on XML document. This key index

can also be used for efficiently evaluate queries.

? Supported by CAPES (Brazil) BEX0706/02-7
?? This work was done while the author was on leave at Université François Rabelais. Supported

by CAPES (Brazil) BEX1851/02-0.

This paper is organized as follows: section 2 gives an overview of the incremental con-
straint checking framework. Section 3 presents our method to build a tree transducer
from a given specification containing a DTD and a set of keys and foreign keys. We
also show how the transducer is used to efficiently verify all the imposed constraints.
Section 4 shows how incremental validation is performed on updates. Section 5 con-
cludes and describes our future research directions.

2 General Overview

An XML document is a structureT composed by an unranked labeled treet and func-
tions typeandvalue. Treet is a mappingt : dom(t) → Σ wheredom(t), called the set
of t’s positions, is a set of finite strings of positive integers closed under prefixes (see
Fig. 1). We writet(p) = a for p ∈ dom(t) to indicate that the symbola is the label
in Σ associated with the node at positionp. The functiontype(t, p) indicates the type
(element, attributeor data) of the node at positionp. The functionvalue(t, p) gives the
value associated with a data node.

Fig. 1 shows part of the labeled tree representing the document used in our exam-
ples. It describes menus and combinations in some French restaurants. Differently from
theà la cartestyle, a combination is a grouping of dishes and drinks, reducing both the
choice and the price for clients. Each node in the tree has a position and a label. Ele-
ments and attributes associated with arbitrary text have a child labeleddata. In Fig. 1
attribute labels are depicted with a preceding @.

restaurant

wine

combinations

...

price

0 1

root

restaurant

03

030

0300 0301 0302

03000 03010 030200201202011

02

02010

0201 0303

03030

price

00

000

menu@name

data

01
@address

data
010

0200

0200102000 02002

020000 020110
(30.00)

desserts
022

......
drinks

020
combinationmeals

wine

021

020010 020020 020100 020120

data
(2000)

...

wineName wineYear mealName

(Cahors)

ε

priceyearname

data data data data data

data data data data
(Grilled Fish)(2000)(Sancerre)

(25.00)(2002)(21.00)(Sancerre)

yearname

Fig. 1. Labeled treet of an XML document

Definition 1. Key and foreign key syntax [8]: A key is represented by(P, (P ′, {P 1,
. . . , Pm})). A foreign key is represented by(P0, (P ′0, {P 1

0 , . . . , Pm
0 })) ⊆ K where

K = (P, (P ′, {P 1, . . . , Pm})) is a key such thatP = P0. In a key, pathP is called the
context path; P ′ the target pathandP 1, . . . , Pm thekey paths. The same applies for a
foreign key, except forP 1

0 , . . . , Pm
0 that are calledforeign key paths. ut

All the paths in the definition above use only the child axes. Context and target paths
should reach element nodes. Key (or foreign key) paths are required to end at a node

associated to a value,i.e., attribute nodes or elements having just one child of typedata.
The next example gives the intuition of the semantics of key and foreign key constraints
over the document of Fig. 1.

Example 1.Let K1 = (/restaurant,(./menu/drinks/wine, {./name, ./year})) be a key constraint
indicating that, in the context of a restaurant, a wine (the target node) can be uniquely identified
by its name and its year. LetFK2 = (/restaurant, (./combinations/combination, {./wineName,
./wineYear}))⊆K1 be a foreign key constraint indicating that, for each restaurant, a combination
is composed by a wine that should appear in the menu of the restaurant. ut

Definition 2. Key and foreign key semantics: An XML tree T satisfies a key(P, (P ′,
{P 1, . . . , Pm})) if for each context positionp defined byP the following two con-
ditions hold: (i) For each target positionp′ reachable fromp via P ′ there exists a
unique positionph from p′, for eachPh(1 ≤ h ≤ m). (ii) For any target positions
p′ andp′′, reachable fromp via P ′, whenever the values reached fromp′ andp′′ via
Ph(1 ≤ h ≤ m) are equal, thenp′ andp′′ must be the same position. Similarly, an XML
treeT satisfies a foreign key(P0, (P ′0, {P 1

0 , . . . , Pm
0 })) ⊆ K if: (i) it satisfies its asso-

ciated keyK and(ii) each tupleτ of values, built following pathsP0/P ′0/P 1
0 , . . . ,P0/

P ′0/Pm
0 (in this order), can also be obtained by following the pathsP/P ′/P 1, . . . ,

P/P ′/Pm (in this order). ut

In the following, we assume an XML treeT and a set of schema and integrity
constraintsD and we survey(i) the validation ofT from scratch which is performed in
only one pass on the XML tree and(ii) the incremental validation of updates overT .

2.1 Validation from scratch

Our method consists in building a tree transducer capable of expressing all the con-
straints of a given specificationD. The tree transducer is composed by a bottom-up tree
automata (to verify the syntactic restrictions) and a set of actions defined for each key
and foreign key. These actions manipulate values and are used to verify the semantic
aspects of constraints. The execution of the tree transducer consists in visiting the tree
in a bottom-up manner4, performing, at each node:

A) The verification of schema constraints.Schema constraints are satisfied if all posi-
tions of a treet can be associated to a state and if the root is bound to a final state
(defined by the specification). A stateq is assigned to a positionp if the children
of p in t verify the element and attribute constraints established by the specifica-
tion. Roughly, a schema constraint establishes, for a position labeleda, the type,
the number and (for the sub-elements) the order ofp’s children. We assume that the
XML document in Fig. 1 is valid wrt schema constraints (see [5] for details).

B) The verification of key and foreign key constraints.In order to validate key and
foreign key constraints we need to manipulate data values. To this end, we define
the values to be carried up from children to parents in an XML tree. The following
example illustrates how the transducer treats values being carried up for each node.
This treatment depends on the role of the node’s label in the key or foreign key.

4 Notice that it is very easy to perform a bottom-up visit even using SAX [14](with a stack).

Example 2.We assume a tree transducer obtained from specificationD (containing a given
DTD together withK1, FK2 of Example 1) and we analyze its execution overT (Fig. 1):

1. The tree transducer computes the values associated to all nodes labeleddata. We consider
value(020000) = value(03000) = Sancerreandvalue(020010) = value(03001) = 2000
as some of the values computed in this step.

2. The tree transducer analyzes the parents of thedata nodes. If they are key or foreign key
nodes, they receive the values computed in step 1. Otherwise, no value is carried up. In our
case, the valueSancerreis passed to key node02000 and to foreign key node0300. The
value2000 is passed to key node02001 and to foreign key node0301.

3. The tree transducer passes the values from children to parent until it finds a target node. At
this level the values for each key or foreign key are grouped in a list. Node0200 is target
for K1, and as the key is composed by two items, the list contains the tuple value〈Sancerre,
2000〉. Similarly, node030 (target node forFK2) is associated to〈Sancerre, 2000〉.

4. The transducer carries up the lists of values obtained in step 3 until finding a context node.
At a context node of a key, the transducer tests if all the lists are distinct, returning a boolean
value. Similarly, at a context of a foreign key, the transducer tests if all the tuples exist as
values of the referenced key. In our case,restaurantis the context node for bothK1 and
FK2. As context node forK1, it receives several lists, each containing a tuple with the
wine name and year. The test verifies the uniqueness of those tuples. As context node for
FK2, it receives several lists, each containing a tuple with the name and year of a wine
of a combination. The test verifies if each tuple is also a tuple for keyK1. For instance,
〈Sancerre, 2000〉 that represents a wine in a combination, appears as a wine in the menu of
the restaurant.

5. The boolean values computed in step 4 are carried up to the root.K1 andFK2 are satisfied
if the conjunction of the boolean values results intrue. ut

Notice that, at each context node, key and foreign key constraints are verified by
respecting a specific order: only after testing all key constraints, the transducer verifies
foreign key constraints (wrt key values already tested). We recall that the context path
of a foreign key must be the same as the context path of its corresponding key.

2.2 Incremental validation of updates
Let us now consider updates over valid XML trees. To this end, we suppose that:

– Updates are seen as changes to be performed on the XML treeT .
– Only updates that preserve the validity of the document (with respect to schema,

key and foreign key constraints) are accepted. If the update violates a constraint,
then it is rejected and the XML document remains unchanged.

– The acceptance of an update relies onincremental validationtests,i.e., only the va-
lidity of the part of the original document directly affected by the update is checked.

We focus on two kinds of update operations. The insertion of a subtreeT ′ at position
p of T and the deletion of the subtree rooted atp in T . To verify if an update should be
accepted, we perform incremental tests, summarized as follows:

1. Schema constraints:We consider the run of the tree transducer on the subtree of
T composed just by the updated positionp, its siblings and their father. If the state
assigned top’s father does not change due to the update,i.e., the tree transducer
maintains the state assignment top’s father as it was before the update, then schema
constraints are not violated (see [5] for details).

2. Key and foreign key constraints:To facilitate the validation of keys and foreign
keys for an update operation, we keep an index tree of those tuples inT defined by
each key. For each key tuple a reference counter is used in order to know how many
times the tuple is used as a foreign key.
The verification of key and foreign key constraints changes according to the update
operation being performed. Firstly we have to find (for each key and foreign key)
the corresponding context nodep′, concerned by the insertion or the deletion. Then,
in order to insert a subtreeT ′ at positionp of T we should perform the following
tests:(i) verify whetherT ′ does not contain duplicate key values for contextp′, (ii)
verify whetherT ′ does not contain key values already appearing inT for context
p′, (iii) verify whetherT ′ does not contain foreign key values not appearing nor
in T ′ neither inT for contextp′ and(iv) for each key tuple in contextp′ being
referenced by a foreign key inT ′, increase its reference counter.
Similarly, to delete a subtreeT ′, rooted at positionp, from an XML treeT we
should perform the following tests, for each contextp′: (i) verify if T ′ contains
only key values that are not referenced by foreign keys (not being deleted) and(ii)
for each key tuple in contextp′ being referenced by a foreign key inT ′, decrease
its reference counter.
The acceptance of an update over an XML treeT wrt keys and foreign keys requires

information about key values inT . Given an XML treeT , the tree transducer is used
once to verify its validity (from scratch). During this first execution of the tree trans-
ducer an index tree, calledkeyTree, is built for each key constraintK that should be
respected byT . EachkeyTreeK is a tree structure that stores the position of each con-
text and target node together with the values associated to each key node inT . Fig. 2
describes this index structure using the notation of DTDs and Fig. 3 shows akeyTree
for keyK1 of Example 1. The next example illustrates the validation of updates.

<!DOCTYPE keyTree[
<!ELEMENT keyTree (context*)>
<!ATTLIST keyTree nameKey CDATA #REQUIRED>
<!ELEMENT context (target+)>
<!ATTLIST context pos CDATA #REQUIRED>
<!ELEMENT target (key+)>
<!ATTLIST target pos CDATA #REQUIRED refCount CDATA #REQUIRED>
<!ELEMENT key #PCDATA>]

Fig. 2. DTD specifying structurekeyTree

@pos

(0)

(0200)

@pos

(K1)

(2002)(Cahors)(3)

targettarget

@pos

(Sancerre)

...

(1) (2000) (0201)

context@nameKey

keyTree

keykeykey@refCount @refCount key

Fig. 3. KeyTreeK1 built over the document of Fig. 1

Example 3.Given the XML tree of Fig. 1, we show its incremental verification due to the
insertion of a new wine in the menu of a restaurant (i.e., the insertion of a labeled treet′ at
positionp = 0200 of t). Moreover, we consider a specification stating that a positionp labeled

drinksshould respect the following schema constraint: the concatenation of the labels associated
with p’s children composes a word that corresponds to the regular expressionqwine

∗.

The verification of the update with respect to schema constraints consists in:(i) considering that
the update is performed (without performing it yet) and(ii) verifying if the stateqdrinks can still
be associated with position020 (0200’s father) by analyzing the schema constraint imposed over
nodes labeleddrinks. To this end, we build the sequence of states associated with020’s children.
The insertion consists of shifting to the right the right siblings ofp. Thus, we consider stateqwine

associated to positions0201 and0202 and we only calculate the state associated with the update
position0200. As the root oft′ (at position0200) is associated to the stateqwine, we obtain
the wordqwine qwine qwine. This word matches the regular expressionqwine

∗. Thus, the update
respects the schema constraints [5].

Now we verify whetherK1 andFK2 (Example 1) are preserved by the insertion. As the inserted
subtree contains only one key value, it contains no key violation by itself (no duplicate of key
values). Then we assume that the update is performed (without performing it yet) and we verify
whether the key value being inserted is not in contradiction with those already existing in the
original document. In our case, we suppose that the wine being inserted is identified by the key
tuple〈Bordeaux, 1990〉. Comparing this value to those stored in thekeyTreeK1 (Fig. 3), we notice
that no violation exists. The inserted subtree does not contain foreign key values and, thus, we
can conclude that the update is possible with respect to key and foreign key constraints.

As the above tests succeed, the insertion can be performed. The performance of an update implies
changes not only on the XML tree but also on index treeskeyTrees. ut

3 Tree Transducers for XML

We first present the definition of our tree transducer. This transducer combines a tree
automaton (expressing schema constraints) with a set of output functions (defining key
and foreign key constraints). In this paper we disregard the specificity or attributes.

Definition 3. Output function : Let D be an infinite (recursively enumerable) domain
and letD∗ denote the set of all lists of items inD. Let T = (t, type, value) be an XML
tree. Anoutput functionf takes as arguments:(i) a tree positionp ∈ dom(t) and(ii) a
list l of items inD. The result of applyingf(p, l) is a list of items inD. In other words,
f : dom(t)× D∗ → D∗. ut

We recall the process described in Example 2: at each node, data values are collected
from children nodes and can be used to perform tests. Output functions are defined to
perform these actions: for the node at positionp, each output function takes as param-
eters the listl of values coming fromp’s children. One output function is defined for
each key and foreign key.

Definition 4. Unranked bottom-up tree transducer (UTT): A UTT overΣ andD is
a tupleU = (Q, Σ, D, Qf ,∆, Γ) whereQ is a set of states,Qf ⊆ Q is a set of final
states,∆ is a set of transition rules andΓ = {f1, ..., fn} is a set of output functions.

Each transition rule in∆ has the forma,E → q where(i) a ∈ Σ; (ii) E is a regular
expression overQ and(iii) q ∈ Q. Each output function inΓ has the formfj(p, l) = l′

as in Definition 3. ut
Key and foreign key constraints are expressed by output functions inΓ . As the tree

is to be processed bottom-up, the basic task of output functions is to define the values
that have to be passed to the parent position, during the run.

3.1 Generating constraint validators

Given a specificationD = (D, K) whereD is a set of schema constraints andK is
composed by a set of keys and foreign keys, we propose a method to translateD into
a UTT. In this sense, we present an algorithm to generate a validator from a given
specification. This validator is executed to check the constraints inD for any XML tree.

Let U = (Q,Σ, D, Qf , ∆, Γ) be a UTT whose transition rules in∆ are obtained
from the translation of a DTDD (part ofD). Each output function inΓ is related
to a finite state automaton that indicates which nodes play a role in keys and foreign
keys. Notice that context, target and key nodes in each keyKj or foreign keyFKj

are defined in a top-down fashion. In order to identify these nodes using a bottom-up
tree automaton, we must traverse the paths stated by each keyKj or foreign keyFKj

in reverse. If we see paths as regular expressions, then we can associate finite state
automata with them. Paths in reverse are recognized by reversing all the transitions of
these automata [13].

Given a key constraintKj (1 ≤ j ≤ k) or a foreign key constraintFKj (k +
1 ≤ j ≤ n), we use the following notations: for context pathPj , we haveMj =
〈Θj , Σ, δj , ej , Fj〉; for target pathP ′j , M ′

j = 〈Θ′j , Σ, δ′j , e
′
j , F

′
j〉; for key or foreign key

pathsP 1
j | . . . | Pmj

j , M ′′
j = 〈Θ′′j , Σ, δ′′j , e′′j , F ′′j 〉. For the sake of homogeneity, we de-

fine MF = 〈{e0, ef}, {root}, {δ(e0, root, ef)}, e0, {ef}〉 as the finite state automaton
recognizing the path formed just by the symbolroot. Fig. 4 illustrates the finite state
automata that recognize the paths inK1 andFK2 of Example 1 in reverse.
Remark: We denote byM.e the current statee of the finite state automatonM , and we
call it aconfiguration.

wine

combination
1

e
2

e

0
e

3
e

4
e

5
e

6
e

8
e

7
e

0
e

1
e

2
e

3
e

4
e

5
e

7
e

6
e

drinks

menu

restaurantname year

M’’ : M’ : M :

restaurantwineName wineYear

combinations

M’’: M’ : M :1 1 1

2 2 2

Fig. 4. Automata corresponding to the paths ofK1 andFK2 in reverse

Algorithm 1 - Key constraints as output functions:
Input: A set ofk keys{Kj = (Pj , (P ′j , {P 1

j , ..., P
mj

j })) | 1 ≤ j ≤ k}, a set of(n− k)
foreign keys{FKj = (Pj , (P ′j , {P 1

j , ..., P
mj

j })) ⊆ K | (k +1) ≤ j ≤ n; K is a key}
Output: A set of output functionsΓ = {f1, . . . , fn}.

begin
Γ = ∅
for eachKj andFKj do

Build the finite automataMj , M ′
j andM ′′

j

UseMj , M ′
j andM ′′

j to specify the functionfj

Γ = Γ ∪ {fj}
returnΓ

end

Each output functionfj ∈ Γ is specified by the algorithm below:
Algorithm 1.1 - Specification of output functions
Input: Automata concerning a keyK or a foreign keyFK.
A positionp and a listl of pairs inD. For each pair, the first element is an automaton
configuration and the second element is a list of values.
Output: A list of pairs inD.
begin
Let a := t(p) //a is the label of positionp

(1) If a = datathen return [(M ′′.e′′, [value(t, p)])]
(2) If a is a target label forK or FK

then return [(M ′.δ′(e′, a), checkArity(concat(filterkey(l))))]
Functionfilterkey leaves in the key lists only the values associated to key posi-
tions ofK (or FK). For that purpose, it selects the singletons whose configuration
corresponds to a final state ofM ′. Functionconcat returns the concatenation of all
its argument lists into one list. If the length of the resulting list does not correspond
to the lengthm of K, then functioncheckArity replaces it by an empty list. For
foreign keys the length is not tested.

(3) If a is a context label for a keyK
then return [(M.δ(e, a), checkKey(filtertarget(l))]

wherecheckKey([v1 . . . vm]) =

{
[true] if v1 . . . vm are all nonempty distinct lists.

[false] otherwise.

(4) If a is a context label for a foreign keyFK
then return [(M.δ(e, a), checkForeign(filtertarget(l))]

wherecheckForeign([v1 . . . vm]) =





[true] if v1 . . . vm are lists whose values appear
in the key taking part in the
definition ofFK.

[false] otherwise.
Remark:In cases (3) and (4) above, functionfiltertarget rejects all the values not
belonging to target lists of keyK (or foreign keyFK), i.e., those whose configu-
ration does not correspond to the final state ofM ′.

(5) If a is the root labelthen return [(MF .ef , concat(filtercontext(l)))]
Functionfiltercontext rejects all the values not belonging to context lists (config-
uration different from the final state ofM).

(6) In all other cases
(i.e., whena 6= dataanda is not a target label, nor a context label, nor the root)
return carryUp(l)
where functioncarryUp is defined as follows:

function carryUp (L : list of pairs)
var result :list of pairs
begin
result← []
for each c = (M.e, v) in L //* M stands forM , M ′ or M ′′

if δ(e, a) = e′ is a transition inM then result← concat(result,[(M.e′, v)])
return result
end

end ut

In cases (1) to (5) the resulting list contains only one pair. A pair is always composed
by:

(A) A configurationM.e whereM is one of the finite automata representing paths in
keys, ande is a state ofM. For example, in case (2),M isM ′, the target automaton
for K or FK. This configuration is obtained by performing the first transition at
automatonM ′, using the symbola as input. Notice thatδ′(e′, a) is a state ofM ′.
Other cases are similar.

(B) A list of values. From data nodes to target nodes the list contains only one value.
From target nodes to context nodes the list contains the values composing a key
(or foreign key). From context nodes to the root the list contains one boolean value
indicating that within a given context,K or FK holds or not.

Notice that for foreign key context level (case (4)),FK and its associated key have
the same context and the tuples representing the key are computed before those that
represent foreign keyFK (sinceKj(1 ≤ j ≤ k) andFKj(k + 1 ≤ j ≤ n)). Once
computed, key tuples are stored inkeyTrees, then foreign key tuples can be checked (as
shown in the next section). At root level (case (5)), we have the boolean values that
were obtained for each subtree rooted at the context level. In case 6, values are carried
up by functioncarryUp. This function selects pairs from children nodes belonging to
key and foreign key paths, by checking configurations in these pairs. The resulting list
can contain more than one pair. If nodes are not concerned by any key or foreign key,
the functioncarryUp does not transmit any value.

3.2 Validating XML documents

The verification of keys and foreign keys are performed simultaneously, in one pass,
together with schema validation, during the execution of the UTT over an XML tree.
Example 4 illustrates such an execution while Definitions 5 and 6 formalize it. The
index keyTree, necessary to perform incremental updates on XML documents, is dy-
namically built. Similarly to the one proposed in [9], it is a tree structure containing
levels for the key name, context, target, key and data nodes as defined in Fig. 2.

Example 4.We consider a specificationD containingK1 andFK2 (Example 1). The finite state
automata associated toK1 andFK2 are the ones given in Fig. 4. To verify if the XML treeT of
Fig. 1 satisfiesK1 andFK2 we run the transducerU (fromD) overT (recall thatU contains two
output functionsf1 andf2 defined fromK1 andFK2 (respectively), following Algorithm 1):

1. For the data nodes, each output function returns a singleton list that contains a pair: the initial
configuration of the key (or foreign key) automatonM ′′, and the value of the node. Positions
020000 and03000 are data nodes, then we have:

f1(020000, []) = [(M ′′
1 .e0, [Sancerre])]; f2(03000, []) = [(M ′′

2 .e0, [Sancerre])].

2. The fathers of data nodes which are key (or foreign key) nodes should carry up the values
received from their children. Thus, each of them executes a first transition inM ′′ using each
key (or foreign key) label as input. For each father of a data node which is not a key (or a
foreign key) node, the output function returns an empty list.
For instance, position02000 is a key node forK1 and position0300 is a foreign key node
for FK2. Then, reading the labelnamefrom statee0 of M ′′

1 , we reach statee1, and we carry
up the valueSancerre. We obtain a similar result forFK2 when reading labelwineName:

f1(02000, [(M ′′
1 .e0,[Sancerre])]) = [(M ′′

1 .e1, [Sancerre])];
f2(0300, [(M ′′

2 .e0, [Sancerre])]) = [(M ′′
2 .e1, [Sancerre])].

At this stage the construction ofkeyTreeK1 starts by taking into account the information
associated to each key node (e.g.,keyTreeK1 [t, 02000] is the subtree rooted atkeyand asso-
ciated with the valueSancerrein Fig. 3).

3. For node0200, wine is a target label ofK1 and for node030, combinationis a target label
of FK2. In order to transmit only key (or foreign key) values, the output function of a target
label(i) selects those that are preceded by a final state of the key automatonM ′′, (ii) joins
them in a new list, and(iii) executes the first transition of the target automatonM ′. In this
way, at a target position the tuple value of a key (or foreign key) is built:

f1(0200, [(M ′′
1 .e1, [Sancerre]), (M ′′

1 .e2, [2000])]) = [(M ′
1.e4, [Sancerre, 2000])];

f2(030, [(M ′′
2 .e1, [Sancerre]), (M ′′

2 .e2, [2000])]) = [(M ′
2.e4, [Sancerre, 2000])].

The construction ofkeyTreeK1 continues andkeyTreeK1 [t, 0200] is obtained taking into ac-
count the information available at position0200. (See subtree rooted attarget in Fig. 3).

4. The computation continues up to the context, verifying whether the labels visited are rec-
ognized by the target automaton or not and carrying up the key (or foreign key) values. For
instance, we reach statee5 in M ′

1 by reading the label “drinks” (Fig. 4):
f1(020, [(M ′

1.e4, [Sancerre, 2000])]) = [(M ′
1.e5, [Sancerre, 2000])];

5. For the node0, the labelrestaurantis a context label of bothK1 andFK2. ForK1 (respec-
tively FK2) the output function selects the sublists associated to a final state of the target
automatonM ′

1 (respectivelyM ′
2). The output function ofK1 checks if all the selected sub-

lists are distinct. The output function ofFK2 verifies if the selected sublists correspond to
lists of values obtained forK1. In both cases, the output functions return a boolean value
that will be carried up to the root:

f1(0, [(M ′
1.e6, [Sancerre, 2000]), (M ′

1.e6, [Cahors, 2002])]) = [(M1.e8, [true])];
f2(0, [(M ′

2.e5, [Sancerre, 2000])]) =[(M2.e7, [true])].
At this point, we havekeyTreeK1 [t, 0] represented by the subtree rooted atcontextin Fig. 3.
Notice that the attributerefCount for tuple 〈Sancerre, 2000〉 has value1 because at this
context node, the tuple〈Sancerre, 2000〉 exists for foreign keyFK2. Indeed, at the context
level we increment therefCount of each key tuple that corresponds to a foreign key tuple
obtained at this level. Supposing that the tuple〈Cahors, 2002〉 appears in three different
combinations (not presented in Fig. 1), we would haverefCount = 3 for it.

6. At the root position the last output function selects the sublists that are preceded by a final
state of the context automatonM and returns all boolean values in these sublists. The con-
struction ofkeyTreeK1 finishes by a label indicating the name of the key (Fig. 3). ut

Definition 5. A run of U on a finite tree t: Let t be aΣ-valued tree andU =
(Q,Σ, D, Qf , ∆, Γ) be a UTT. Given the keysK1, . . . ,Kk and foreign keysFKk+1,

. . . , FKn a run of U on t is: (i) a treer : dom(r) → Q such thatdom(r) = dom(t);
(ii) a function£ : dom(r) → (D∗)n and(iii) k keyTrees.

For each positionp whose children are those at positions5 p0, . . . , p(z − 1) (with
z ≥ 0), we have:

(i) r(p) = q if the following conditions hold:
(a) t(p) = a ∈ Σ.
(b) There exists a transitiona,E → q in ∆.
(c) r(p0) = q0, . . . , r(p(z − 1)) = qz−1.
(d) The wordq0 . . . qz−1 belongs to the language generated byE.

(ii) £(p) = l = 〈f1(p, concat(l10, . . . , l
1
z−1)), . . . , fn(p, concat(ln0 , . . . , lnz−1))〉 with

£(p0) = l0, . . . , £(p(z − 1)) = lz−1 where eachli = 〈l1i , . . . , lni 〉 is a n-tuple.

(iii) for (1 ≤ j ≤ k), keyTreeKj
[t, p] is constructed using the already computed

keyTreeKj [t, p0], . . . ,keyTreeKj [t, p(z − 1)], as follows:

(a) If t(p) is a key label ofKj , thenkeyTreeKj [t, p] is the tree:
<key> t(p) = value(t, p0)</key>

(b) If t(p) is a target label ofKj , thenkeyTreeKj [t, p] is:
<target pos=p refCount=0> keyTreeKj [t, p0] . . .keyTreeKj [t, p(z − 1)]

</target>

(c) If t(p) is a context label ofKj , thenkeyTreeKj [t, p] is:
<context pos=p> keyTreeKj [t, p0] . . . keyTreeKj [t, p(z − 1)] </context>

Moreover, if t(p) is a context label of a foreign keyFK, then increment the
attributerefCount in the correspondingkeyTreeKj .

(d) If t(p) is the root label thenkeyTreeKj [t, p] is the tree:
<keyTree nameKey= Kj> keyTreeKj [t, p0] . . . keyTreeKj [t, p(z−1)] </keyTree>

(e) In all other cases, for each keyKj , we definekeyTreeKj [t, p] as the forest
composed by all the treeskeyTreeKj [t, p0] . . . keyTreeKj

[t, p(z − 1)].

Notice that, although thekeyTrees are defined in general as forests, for the special
labels mentioned in cases (a) to (d) above, we build a single tree. ut

Definition 6. Validity : An XML tree t is said to be valid with respect to schema con-
straints if there is a successful runr, i.e., r(ε) ∈ Qf . An XML tree t is said to be valid
with respect to key and foreign key constraints if the lists of£(ε) contain only the value
true for each key and foreign key. ut

Remark that item(ii) of Definition 5 specifies that the output for each positionp
in the XML tree is a tuple composed by one list for each key (or foreign key) being
verified. Each listlj in the tuple is the result of applying the output functionfj , defined
for thejth key or foreign key, over the following arguments:

– p: the position indom(t).

5 The notationp(z− 1) indicates the position resulting from the concatenation of the positionp
and the integerz − 1. If z = 0 the positionp has no children.

– concat(lj0, . . . , l
j
z−1): the list formed by the information carried up from the children

of p, concerning thejth key.

At the end of the run over an XML tree, each keyKj is associated to akeyTreeKj

that respects the general schema given by Fig. 2. Attributepos stores the target and
context positions for a given key and attributerefCount indicates when a keyKj is
referenced by a foreign key.

4 Incremental Validation of Updates

We consider two update operations, denoted byinsert(T , p, T ′) anddelete(p, T), where
T andT ′ are XML trees andp is a position. Fig. 5 illustrates these operations on aΣ-
valued tree. Only updates that preserve validity wrt the constraints are accepted.

aa a a

b c

2

b c d

20

e

b m c d

10

e
30

p

b m d

p e

0 1 2 30 0 1 2

10 20

0 1 1

ε ε ε ε

(iii) (iv)(i) (ii)

Fig. 5. (i) Initial Σ-valued treet having labelsa (positionε), b (position 0) andc (position 1).
(ii) Insertion atp = 2. (iii) Insertion atp = 1. (iv) Deletion atp = 2.

4.1 Incremental key and foreign key validation

Let T = (t, type, value) be a valid XML tree,i.e., one satisfying a collection of keys
Kj (1 ≤ j ≤ k) and foreign keysFKj ((k+1) ≤ j ≤ n). LetU = (Q,Σ, D, Qf ,∆, Γ)
be a UTT specifying all the constraints that should be respected byT . We should con-
sider the execution ofU over a subtreeT ′ being inserted or deleted.

Given a subtreeT ′ = (t′, type, value), the execution ofU overT ′ gives a tuple:
〈q′, 〈l1, . . . , ln〉, 〈keyTreeK1

[t′, ε], . . . , keyTreeKk
[t′, ε]〉〉 (1)

whereq′ is the state associated to the root oft′, 〈l1, . . . , ln〉 is a n-tuple of lists and
〈keyTreeK1

[t′, ε], . . . , keyTreeKk
[t′, ε]〉 is a k-tuple containing thekeyTreefor each key.

Notice that the n-tuple of lists has two distinct parts. Listsl1, . . . , lk represent keys
and listslk+1, . . . , ln represent foreign keys. Eachlj (1 ≤ j ≤ n) is a list of pairs,
i.e., eachlj has the form[c1, . . . , cm] where eachch is a pair containing an automaton
configuration and a list of values.

When performing an insertion, we want to ensure thatT ′ has no “internal” validity
problems (as, for instance, duplicated values forKj). Thus, we defineT ′ as locally
valid if the tuple (1) respects the following conditions: (A)q′ is a state inQ; (B) for
each listlj (1 ≤ j ≤ k) we have:
(i) if the root of t′ is a target position forKj then the number of values inlj equals the

number of elements composing the keyKj ;
(ii) if the root of t′ is a context position forKj then the listlj is [(Mj .e, [true])];

(iii) if the root of t′ is a position above the context positions forKj then the listlj is
[c1, . . . , cm], where each pairch does not contain[false] as its list of values.

Notice that no condition is imposed on foreign keys. A subtreeT ′ can contain tuple
values referring to a key value appearing inT (and not inT ′).

In the following, we assume that subtrees being inserted in a valid XML tree are
locally valid and we address the problem of evaluating whether an update should be
accepted with respect to key and foreign key constraints. Before accepting an update,
we incrementally verify whether it does not cause any constraint violation. To perform
these tests, we need the context node of a key or foreign key. To this end, we define
procedurefindContextthat computes:

– The context positionp′ for a keyKj (or a foreign keyFKj) which is an ancestor
of the update positionp in the treet.

– A list l′ containing the key (or foreign key) values for that context position, consid-
ering values carried up from the subtree being inserted or deleted.6

The tests performed for insertion operationinsert(T , p, T ′) are presented next. Recall
thatT is valid andT ′ is locally valid.

Algorithm 2 - Incremental tests for update operation insert(T , p, T ′)
1. For each list lj 6= [] (1 ≤ j ≤ k) obtained in the execution ofU overT ′ for each

keyKj do
(a) If p is under a context node ofKj then

i. Call findContext(p, lj), that returns a context positionp′ andl′ = [v1, ..., vr].
ii. For each listv in l′ do

If there exists a tuplekval in keyTreeKj
[t, p′] such thatkval = v

then the insertion violatesKj and must be rejected
else the insertion respectsKj .

(b) If p is the context position or it is between the root and a context node ofKj

then the insertion respectsKj .
2. For each lj 6= [] ((k + 1) ≤ j ≤ n) obtained in the execution ofU overT ′ do

(a) CallfindContext(p, lj), that returns a context positionp′ andl′ = [v1, ..., vr].
(b) For each listv in l′ do:

If there exists a tuplekval in thekeyTreeKi
such thatkval= v

then the insertion respects the foreign keyFKj . The reference counter that
corresponds tokval will be incremented at the end of the procedure, if the
insertion is accepted.
else the insertion does not respect the foreign keyFKj and must be rejected.

3. If all keys and foreign keys, together with schema constraints [5], are respected
then accept the update and perform the modifications toT and allkeyTrees.
else reject the update. ut

Before performing an insertion, Algorithm 2 tests if we are not adding key dupli-
cates onT and if the new foreign key values correspond to key values. When we refer to
a tuple in akeyTree, this tuple is obtained by concatenating the key values found inside
target tags of thiskeyTree, taking into account a context positionp′ . The next example
illustrates an insertion operation with respect to key and foreign key constraints.

6 Let lj be the list of pairs obtained forKj or FKj by the local validity check. Procedure
findContextexecutes the automatonM (composition ofM ′′

j andM ′
j) starting from the con-

figurations inlj and using the labels associated to the ancestors of positionp [1].

Example 5.We consider the updateinsert(T , 0200, T ′) presented in Example 3. The execution
of U overT ′ gives the tuple:〈qwine, 〈[(M ′

1.e4, [Bordeaux, 1990])], []〉, 〈keyTreeK1
[t′, ε]〉〉.

We see thatT ′ is locally valid and that the update affects onlyK1. ProcedurefindContextreturns
the context positionp′ = 0 and the listl′ = [〈Bordeaux, 1990〉]. We compare the tuples inl′ with
those inkeyTreeK1 (Fig. 3) for contextp′ = 0. All these tuples are distinct and thus the insertion
is possible forK1. As no other key is affected, the insertion is accepted. ut

In a similar way, we define incremental tests for the operationdelete(p, T). These
tests check if the deletion of a subtree rooted at a positionp does not violate constraints,
before actually removing the subtree. The details are given in [1].

5 Conclusions

This paper extends and merges our previous proposals [5, 6]. In [5], we propose an
incremental validation method, but only with respect to schema constraints. In [6] we
just consider the validation from scratch of an XML document associated to only one
key constraint. In the current paper, we deal with incremental validation of updates
taking into account schema constraints together with several key and foreign key con-
straints. Our verification algorithm uses only synthesized values (i.e., values commu-
nicated from the children to the parents of a tree), making the algorithms suitable for
implementation in any parser generator, or even using SAX [14] or DOM [19].

The algorithms presented here have been implemented using the ASF+SDF meta-
environment [7]. The verification of keys and foreign keys usesKeyTrees, which can
also be used for efficiently evaluating queries based on key values.

Validity verification methods for schema constraints have been addressed by [5, 10,
15–18]. The validation of updates is also treated in [10, 17]. In [17], schema constraints
wrt specialized DTDs are considered and incremental validation is performed in time
O(log2(n)), wheren is the size of the document. As shown in [5], in terms of schema
constraints, our incremental validation (wrt DTDs) isO(m+1), wherem is the number
of children of the update position.

Key constraints for XML have been recently considered in the literature (for in-
stance, in [2, 4, 6, 8, 9]) and some of their aspects are adopted in XML Schema. In our
paper, the definition of integrity constraints follows the key specification introduced
in [8]. As shown in [11], it is easy to produce examples of integrity constraints that
no XML document (valid wrt a schema) can verify. In our work, we assume key and
foreign key constraints consistent with respect to a given DTD.

In [9] a key validator which works in asymptotic linear time in the size of the docu-
ment is proposed. Our algorithm also has this property. In contrast to our work, in [3, 9]
schema constraints are not considered and foreign keys are not treated in details. In [4]
both schema and integrity constraints are considered in the process of generating XML
documents from relational databases. Although some similar aspects with our approach
can be observed, we place our work in a different context. In fact, we consider the evo-
lution of XML data independently from any other database sources (in this context both
validation and re-validation of XML documents can be required).

We are currently studying the following lines of research:(i) An extension of our
method to deal with other schema specification, for instance XML-Schema and special-
ized DTDs.(ii) An implementation of an XML update language such as UpdateX [12]

in which incremental constraint checking will be integrated. To this end, we shall con-
sider a transaction including several updates and check validity of its result.
Acknowledgements:We would like to thank the anonymous referees for their sugges-
tions to the final version of this paper.

References

1. M. A. Abrao, B. Bouchou, M. Halfeld-Ferrari, D. Laurent, and M. A. Musicante. Update
validation for XML in the presence of schema, key and foreign key constraints. Technical
report, Universit́e Franois Rabelais Blois-Tours-Chinon, 2004 (to appear).

2. M. Arenas, W. Fan, and L. Libkin. On verifying consistency of XML specifications. InACM
Symposium on Principles of Database System, 2002.

3. M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated update management for
XML integrity constraints. InProgramming Language Technologies for XML (PLANX02),
2002.

4. M. Benedikt, C-Y Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both types and con-
straints in data integration. In ACM Press, editor,SIGMOD, San Diego, CA, 2003.

5. B. Bouchou and M. Halfeld Ferrari Alves. Updates and incremental validation of XML
documents. In Springer, editor,The 9th International Workshop on Database Programming
Languages (DBPL), number 2921 in LNCS, 2003.

6. B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Musicante. Tree automata to verify key
constraints. InWeb and Databases (WebDB), San Diego, CA, USA, June 2003.

7. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling rewrite systems:
The ASF+SDF compiler.ACM, Transactions on Programming Languages and Systems, 24,
2002.

8. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C. Tan. Keys for XML. InWWW10, May
2-5, 2001.

9. Y. Chen, S. B. Davidson, and Y. Zheng. XKvalidator: a constraint validator for XML. In
ACM Press, editor,Proceedings of the 11th International Conference on Information and
Knowledge Management, pages 446–452, 2002.

10. B. Chidlovskii. Using regular tree automata as XML schemas. InProc. IEEE Advances in
Digital Libraries Conference, May 2000.

11. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.Journal of
the ACM, 49(3):368–406, 2002.

12. G. M. Gargi, J. Hammer, and J. Simeon. An XQuery-based language for processing updates
in XML. In Programming Language Technologies for XML (PLANX04), 2004.

13. J. E. Hopcroft, R. Motwani, and J. D. Ullman.Introduction to Automata Theory Languages
and Computation. Addison-Wesley Publishing Company, second edition, 2001.

14. W. S. Means and M. A. Bodie.The Book of SAX: The Simple API for XML. No Starch Press,
2002.

15. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. InACM Symposium
on Principles of Database System, pages 11–22, 2000.

16. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema language using formal lan-
guage theory. InExtreme Markup Language, Montreal, Canada, 2001.

17. Y. Papakonstantinou and V. Vianu. Incremental validation of XML documents. InProceed-
ings of the International Conference on Database Theory (ICDT), 2003.

18. L. Segoufin and V. Vianu. Validating streaming XML documents. InACM Symposium on
Principles of Database System, 2002.

19. L. Wood, A. Le Hors, V. Apparao, S. Byrne, M. Champion, S. Issacs, I. Jacobs, G. Nicol,
J. Robie, R. Sutor, and C. Wilson.Document Object Model (DOM) Level 1 Specification.
W3C Recommendation, http://www.w3.org/XML, 2000.

