
SCAS-IS: Knowledge Extraction and Reuse in Multiprocessor Task Scheduling
based on Cellular Automata

Murillo G. Carneiro
Institute of Mathematical Sciences and Computing, ICMC

University of São Paulo, USP
São Paulo, Brazil

carneiro@icmc.usp.br

Gina M. B. Oliveira
Faculty of Computing, FACOM

Federal University of Uberlândia, UFU
Uberlândia, Brazil
gina@facom.ufu.br

Abstract—Static Task Scheduling Problem (STSP) in multi-
processors is a NP-Complete problem. Cellular Automata (CA)
have been recently proposed to solve STSP. The main feature of
CA-based models to STSP is the extraction of knowledge while
scheduling an application and its subsequent reuse in other
instances. Previous works showed this approach is promising.
However some desirable features have not been successfully
exploited yet, such as: (i) the usage of an arbitrary number of
processors, (ii) the massive parallelism inherent to CA and (iii)
the reuse of evolved rules with competitive results. This paper
presents a new model called SCAS-IS (Synchronous Cellular
Automata Scheduler with Initialization Strategies). Its major
innovation is the employment of fixed initialization strategies
to start up CA dynamics. Parallel program graphs found in
literature and others randomly generated were used to test the
new model. Results show SCAS-IS overcame related models
both in makespan obtained as computational performance. It
is also competitive with meta-heuristics.

Keywords-cellular automata; multiprocessor task scheduling;
genetic algorithms.

I. INTRODUCTION

The increasing availability of parallel and distributed
systems turns possible the development of computationally-
complex and time-consuming applications. However, to bet-
ter explore the potential of such computational power it
is necessary to develop efficient methods and tools for
managing this resource. Task scheduling plays a key role in
multiprocessor architectures. The split of an application into
independent tasks and their allocation among processors are
critical for an efficient employment of such environments.

In a broad sense, scheduling is a decision-making process
that involves resources and tasks in the search for optimize
some objective, typically the resultant runtime or makespan
[1]. Multiprocessor task scheduling is the process to allo-
cate a set of independent computational tasks in a parallel
application into processing nodes of the architecture. In the
present work, a version of this problem is considered in
which all information about the tasks is known a priori.
It is also known as static task scheduling problem (STSP)
[2]. Given an instance of STSP, represented by a DAG
(directed acyclic graph), if precedence constraints among

tasks are satisfied and the resultant makespan is minimized
we have an optimal scheduling. Even limited to the simplest
case - a parallel system with only two processors - the
problem to find an optimal scheduling is NP-Complete
[3]. There are several works in the literature investigating
approaches to solve STSP which typically employ heuristics
or meta-heuristics [2], [4]. Genetic algorithms and simulated
annealing are often explored to this problem [4].

Cellular Automata (CA) are simple discrete dynamical
systems composed by lattice and transition rule. The em-
ployment of CA models to solve STSP was previously in-
vestigated in [5]–[9]. In such works, an evolutionary method
is employed in a learning phase to found adequate rules to
schedule a parallel program. The possibility of implemen-
tation on parallel hardware together with the simplicity of
its basic components are among the most notable features
of cellular automata [10]. These characteristics turn them
adequate to be implemented in massive parallel architectures
like FPGA speeding up the throughput. However, almost
all previous models presented in literature were not able
to explore the inherent parallelism into CA because they
use an asynchronous (sequential) updating of cell states
(only one cell can update its state at a time) [5]. Recently,
a scheduler model called Synchronous Cellular Automata
Scheduler (SCAS) [9] has presented good scheduling results
while employing a synchronous updating of cells, turning its
parallel implementation viable.

Using traditional heuristics or meta-heuristics approaches
to STSP, a computational effort is used to solve an instance
of the problem and when a new instance is presented to
the algorithm, the process need to start again from scratch.
A promising skill of CA-based previous approaches is their
ability to extract knowledge from the scheduling process of a
parallel application and reuse it in others instances. However
it was identified limitations in previous studies specially in
the reuse phase and when a number of processors above
two is used in the system architecture. In our investigations
we discover that one reason of such weakness is due to the
guideline that CA transition rules evolved in the learning
phase must be able to perform the schedule starting from



any initial configuration of the lattice. This lack of sensibility
required in the previous models turns the evolutionary search
complex and time-consuming and it does not return any
actual contribution to scheduling process.

A new model called Synchronous Cellular Automata-
based Scheduler using fixed Initialization Strategies (SCAS-
IS) is presented and evaluated here. The major innovation of
the new model is the employment of a few number of simple
initialization strategies to start up CA dynamics instead of
the usage of arbitrary random initial configurations (ICs).
As a consequence the evolved rules need to be able to
perform the schedule starting only from a small number of
ICs given by deterministic initialization strategies. In this
work, to establish the initial allocation of tasks, three simple
initializations are used. As its predecessor SCAS [9], the
resultant method uses a linear neighborhood and it is suitable
to be implemented in parallel hardware since it employs
a synchronous cells updating. Results show that SCAS-
IS model was able to perform efficient task scheduling in
systems with more than two processors and it was able
to extract knowledge during the process of scheduling of
an application and reuse it to solve other instances. It also
overcame previous CA-based models.

The remainder of this paper is organized as follows: Sec-
tion II presents a backgroundabout multiprocessor schedul-
ing, cellular automata and CA-based scheduling models.
Section III presents some analysis about the previous mod-
els and describes the proposed model: SCAS-IS. Section
IV contains experimental results concerning SCAS-IS and
comparing it with other methods. The last section contains
conclusions about the current research and some proposi-
tions of future investigations.

II. BACKGROUND

A. Static Task Scheduling Problem

A parallel program can be represented by a directed
acyclic graph (DAG) defined by tuple GP = (V,E,W,C),
where V = {t1, . . . , tN} denotes the set of N graph tasks
(nodes); E = {ei,j | ti, tj ∈ V } represents the set of
communication edges, also called precedence constraints;
W = {w1, . . . , wn} represents the set of tasks runtime,
in others words, for each task t ∈ V is assigned a computa-
tional weight w(t) ∈ W relative to its computational cost;
and C = {ci,j | ei,j ∈ E} denotes the set of communication
times of the edges, in others words, for each edge ei,j ∈ E
is assigned a communication cost ci,j ∈ C related to the
cost of data transfer between tasks ti and tj when running
on different processors. GP is called program graph. Figure
1 shows an example of program graph called gauss18 that
represents a set of 18 tasks.

In multiprocessor model considered here, all processors
have the same computational power and the communi-
cations between the channels do not consume any time
of the processor. Furthermore, a scheduling policy defines

Figure 1. Example of program graph (gauss18).

the running order of tasks in each processor. Note that
while the scheduler distributes tasks among processors, the
scheduling policy ordering these tasks within each processor.
The scheduling policy used in this work is: the task with the
highest dynamic b-level first [5]. The b-level is the higher
cost between a task and an exit node. The b-level is dynamic
when is calculated considering the allocation of the tasks in
processors and the communication cost is only considered
when tasks are distributed on different processors.

B. Cellular Automata

CA is a discrete dynamic system composed of a cellular
space and a state transition function [11]. The cellular space
is a lattice of l cells (simple and similar components that
have local connectivity and boundary conditions) organized
in an d-dimensional arrangement. Each cell assumes a state
from a finite set of k possible states in each time step. The
transition function or rule f determines the next state of each
cell. Temporal evolution is the process of applying the rules
over the lattice by a given number of time steps T . Cells
updating usually happens in the following ways:

• Parallel or Synchronous: in which all cells of the
lattice update their states synchronously at each time
step.

• Sequential or Asynchronous: in which only one cell
updates its state at each time step and this new state is
considered in updating of others cells.

A neighborhood of radius R is defined for each cell in
the lattice. The neighborhood length of a cell i is given by
m = 2R+1 and the next state of a cell is given by a function
of its current state and the current states of their neighbors
in the lattice (R cells to each side). Figure 2(a) shows a one-
dimensional (d = 1) and binary (k = 2) cellular automaton
with 5 cells (l = 5) and neighborhood of radius 1 (m = 3).
Figure 2(b) shows a transition rule (f ) that presents the new
state of central cell for all possible configurations of the



neighborhood. Figure 2(c) presents the temporal evolution
of the lattice by two time steps using synchronous updating
and periodic boundary condition (the lattice is a ring). Figure
2(d) shows the temporal evolution of lattice by two time
steps using sequential updating and null boundary condition
(both the neighbor to the left of first cell as the neighbor to
the right of the last cell are considered in the state 0).

Figure 2. CA example: (a) initial lattice; (b) transition rule; (c) parallel
evolution mode; (d) sequential evolution mode.

C. Cellular Automata-based Scheduler

A CA-based scheduler model was presented in [5] in
which it is assumed that each cell of the lattice is associated
with a task. If a set of tasks has cardinality x, CA lattice
has x cells. Furthermore, given an architecture consisting of
w processors, CA will have w possible states. Assuming a
system with two processors (P0 and P1), each cell can take
value 0, indicating that the corresponding task is allocated
on processor P0, or value 1 (P1). The model operates in two
modes: learning and operation. It is a hybrid model because
it employees a genetic algorithm (GA) to learning CA rules.

In the learning mode, GA is used to search for rules
able to converge the lattice to optimal (or sub-optimal)
allocations of a given DAG, starting from random initial
configurations. GA population (P ) is initially formed by CA
state transition rules randomly generated. Fitness function is
calculated in each GA generation by: (i) randomly sorting a
set of initial lattices SLatt representing random allocations
of tasks in processors; (ii) temporal evolution of each lattice
l of SLatt by each rule transition r in P for S time steps; (iii)
allocations obtained in time S are ordered in each processor
using a scheduling policy obtaining makespan associated to
each pair (r, l); (iv) rule fitness is given by the average of
makespan calculated starting from each lattice of SLatt. The
best rule presents the smallest makespan average.

In the operation mode it is expected that, for any initial
allocation of tasks, CA rules stored after learning are able
to evolve the lattice until a configuration which represents
an optimal allocation, that is, it minimizes the makespan. It
is also desired that the rules obtained in the learning phase
can be used in the scheduling of other graphs.

III. SCAS-IS

A. Analysis of related models

The majority of works related to CA-based scheduling
used only two processors [5], [7]–[9]. An attempt to increase
the number of processors (Vs) was presented in [6]. How-
ever, it showed that the scheduler model is not able to deal
with the complexity increasing due to the usage of number
of processor greater than two. Table I shows the results
published in [6] using CAS model with sequential updating
in the learning phase which are compared with the results
obtained by a genetic algorithm (GA). The second model
is a ”pure” genetic algorithm that allocates and schedules
the tasks in processors. That is, such model does not use
CA rules. Table I also shows results of a similar experiment
we performed using SCAS environment (presented in [9])
in the learning phase. As one can see the results of CAS
and SCAS CA-based models starting from Vs = 3 decays
when compared to meta-heuristic GA. The worst results
were obtained using program graph gauss18.

Table I
BEST MAKESPAN FOUND USING GA, CAS AND SCAS MODELS FOR

DIFFERENT PROGRAM GRAPHS.

GP CAS [6] SCAS GA [6]
2 3 4 2 3 4 2 3 4

g18 46,0 38,0 27,0 46,0 38,0 27,0 46 36 26
g40 80,0 57,0 46,0 80,0 57,0 45,2 80 57 45

gauss18 44,0 48,0 52,0 44,0 52,0 50,8 44 44 44

We performed new comparative experiments to evaluate
previous models CAS and SCAS in the operation phase,
when the rules learned for one specific graph (gauss18) are
applied to schedule other programs graphs. We implemented
CAS and SCAS with linear neighborhood being that the first
uses sequential updating as in [6] and the second employs
parallel updating as in [9]. Table II shows results of rules
learned based on gauss18 using CAS and SCAS when
applied to graphs g18, g40 [6] and three random graphs with
30, 40 and 50 tasks [9]. We also implemented a pure GA
and a simulated annealing (SA) for scheduling to use their
results as reference values. One can also observe that results
of reusing gauss18 rules are not reasonable when compared
with meta-heuristics for both CA-based models, being that
SCAS is even worst than CAS. In [9], the models were
investigated only in learning phase and CAS and SCAS were
similar. We believe that a possible cause to the undesirable
performance of previous models in reuse phase are related



to the way in which CA lattices are initialized to start
scheduling as explained in next section.

Table II
REUSE OF THE RULES EXTRACTED FOR gauss18 ON DISTINCT PROGRAM

GRAPHS IN SCAS, CAS AND SCAS-IS MODELS FOR Vs = 2.

GP GA SA CAS SCAS SCAS-IS
g18 46 46 49,49 64,05 46
g40 80 82 86,25 106,40 80

rand30 1222 1222 1336,61 1743,25 1230
rand40 983 997 1136,55 1268,29 990
rand50 624 664 730,70 837,22 650

B. Description of SCAS-IS

In previous works [5]–[9], the scheduler model focuses
on the capacity of a transition rule to evolve any random
initial lattice to a configuration that represents the optimal
allocation of tasks. Thus, during the learning phase, each rule
is evaluated according to its performance when scheduling
a set of initial lattices (SLatt). Besides, in the normal
phase, the quality of any evolved rule is measured using
it to schedule a new set of random lattices. However, the
search for this independence to initial lattice makes the rules
search complex and computationally intensive, embarrassing
GA convergence. Furthermore, we believe that the more
important generalization is not related to the randomly initial
lattice used to start the scheduling process, instead it is
related to the capacity of a rule to schedule others instances
in reuse mode. We build a new model named Synchronous
Cellular Automata-based Scheduler using fixed Initialization
Strategies (SCAS-IS) to deal with these complexities. The
major innovation of the new model proposed here is the em-
ployment of a few number of simple initialization strategies
to start up CA evolution instead of the usage of arbitrary
random initial configurations. As a consequence the evolved
rules need to be able to perform the schedule starting only
from a small number of initial configuration of the lattices,
given by a deterministic and simple initialization strategy.
In this work, to establish the initial allocation of tasks,
three simple initializations are used: IS1, IS2 e IS4. IS1

establishes a state switching of cells, in a lexicographic order
of states, one-by-one, starting from the first lattice cell. If the
lattice size is not a multiple of 2, the last cell is truncate in
state 0. For example, for gauss18 using Vs = 2, as the lattice
has 18 cells and 2 possible states (0 and 1) the initial lattice
given by IS1 is: 010101010101010101. IS2 and IS4 are
similar strategies being that the first switches states two-by-
two and the second four-by-four. For gauss18 with Vs = 2,
IS2 and IS4 give the initial lattices 001100110011001100
and 000011110000111100, respectively.

SCAS-IS employees synchronous updating of cells (as
SCAS) and works in two modes: learning and reuse. It
receive as input Vs and a program graph. Initialization
strategies are used to create three initial allocations. The

learning mode is based on SCAS: it employs tournament
selection and fitness-based reinsertion, the final population
(parents and children) is ordered and the best rules are
selected to next generation. As pointed in [9], these strategies
stimulate the competition between individuals allowing a
widely search in solution space, which is very difficult
using elitist strategy and parallel updating as in [5]–[8]. The
main steps in evaluation are: (i) applying fixed initialization
strategies chosen a priori to obtain three initial allocation
which defines the IC of the three lattices; (ii) temporal
evolution of the lattices using each rule transition r in P
for S time steps; (iii) the final lattices in time S define the
final allocations of tasks which are ordered in each processor
using a scheduling policy obtaining makespan associated to
each rule r; (iv) rule fitness is equal to smaller makespan
between three final allocations obtained using it. The best
rule in P presents the smallest makespan. In fact, step (i)
described above is performed only once during GA run,
because the allocation determined by initialization strategies
are fixed and they are used in all evaluations. In reuse mode,
the CA is equipped with a set of rules in repository RDB
and SCAS-IS receives a new program graph to schedule.
The same ISs used in learning mode are used in reuse mode
in step (i) to obtain the initial allocation associated to the
graph. Steps (ii) to (iv) are executed for each rule in RDB,
returning the scheduling with the smallest makespan.

IV. RESULTS AND DISCUSSION

Experiments to evaluate SCAS-IS performance are dis-
cussed here. The results obtained are exhibited in the first
column of Table III. They are compared with reproductions
of other CA-based approaches: CAS [6] and SCAS [9]. A
drawback related to these previous CA-based schedulers is
that they not ensure the same makespan in learning and
operation mode for a given program graph since lattice ICs
are randomly generated and the rules may not evolve them
to the same results found by GA evaluation as one can see
in Table III. On the other hand, SCAS-IS does not need
an operation mode because it always starts from the same
ICs obtained by ISs. In addition, the table also presents the
best results obtained using ISs, which can be thought as
the kick-off for SCAS-IS. The table also presents results
of two meta-heuristics applied to this problem: genetic
algorithm (GA) and simulated annealing (SA). Columns
“BEST” represents the smallest makespan found (out of 20
runs) for GA, SA and CA-based models (which represents
the smallest makespan found when testing all rules found
in learning mode) and columns AVG shows the makespan
average considering all runs (learning phase to CA-based
approaches). Considering CAS and SCAS results, CA rules
was applied starting from 1000 random ICs of the lattice,
as in normal operation mode [6], and the table (column
BEST) shows the smallest average obtained by the best rule.
Considering SCAS-IS results, CA rules were applied starting



Table III
MAKESPAN RESULTS FOUND BY THE BEST CA RULES EVOLVED WITH SCAS-IS, CAS AND SCAS (LEARNING MODE) COMPARED WITH THOSE

FOUND BY META-HEURISTICS GA AND SA.

GP Vs SCAS-IS CAS SCAS GA SA IS T
BEST AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST

2 46 46,00 46,00 46,00 46,00 46,00 46 46,00 46 46,00 46 =
g18 3 36 36,35 38,00 38,36 38,00 38,47 36 36,00 36 36,10 40 <

4 26 26,05 26,00 26,90 27,00 26,99 26 26,00 26 26,00 27 <

2 80 80,00 80,00 80,76 80,00 80,81 80 80,00 82 86,90 81 <
g40 3 57 57,00 57,00 57,15 57,00 57,22 57 57,15 66 67,85 58 <

4 45 45,45 45,28 45,82 45,20 45,92 46 46,45 55 57,75 46 <

2 44 44,55 44,00 47,60 44,00 47,86 44 44,95 44 46,30 70 <
gauss18 3 44 45,90 52,00 52,65 52,00 52,21 44 45,65 44 46,15 75 <

4 44 45,55 52,00 52,68 50,80 52,44 44 45,65 46 47,35 75 <

2 1222 1224,00 1239,00 1247,31 1226,95 1267,50 1222 1222,05 1222 1244,60 1280 <
rand30 3 894 934,75 963,00 1021,89 1012,86 1024,39 821 860,90 970 1027,05 1025 <

4 822 839,65 911,19 1011,58 986,00 1020,39 753 785,35 853 914,70 1023 <

2 983 985,10 1006,00 1020,47 997,27 1024,19 983 983,15 997 1046,65 1056 <
rand40 3 710 724,50 810,94 833,40 796,60 849,27 685 699,05 794 861,35 907 <

4 608 624,95 681,00 719,65 725,24 762,76 561 585,55 684 759,90 743 <

2 624 638,60 661,18 667,78 662,90 673,98 624 626,80 664 709,00 684 <
rand50 3 580 605,20 643,09 659,60 655,12 668,88 504 532,60 624 680,20 784 <

4 580 603,60 620,00 643,98 642,64 661,51 508 528,80 600 671,80 724 <

from three IC lattices (IS1, IS2 and IS4) and the table
shows the makespan obtained by the best rule.

Results in Table III show a good advantage of SCAS-
IS over other CA-based approaches. Column “T” shows
the results of Mann-Whitney test between SCAS-IS and
CAS considering all runs. There is statistical evidences that
SCAS-IS is better than CAS in 17/18 cases considering a
significance level of 95%. A similar test between SCAS
and SCAS-IS was performed and there is also statistical
evidences that SCAS-IS overcame its predecessor SCAS in
the same 17 cases. An analysis of SCAS-IS performance
in relation to meta-heuristics GA and SA can also be
performed using Table III. Considering graphs extracted
from literature, SA returned the worst results while GA and
SCAS-IS returned best results. Considering random program
graphs, GA overcame SCAS-IS, especially for Vs = 4, but
the new model was able to improve the value obtained by
initialization strategies (ISs) and it was better than SA.

SCAS-IS was also evaluated in reuse. CA was equipped
with best rules extracted in learning mode for gauss18. Such
rules were applied to schedule other program graphs. The
last column of Table II shows the best scheduling found by
SCAS-IS rules in reuse mode. The best values were obtained
by GA but it must be take into account that this model was
evolved for each one of the graphs, while SCAS-IS was
evolved only for gauss18. Finally, comparing SCAS-IS with
CAS and SCAS, it is possible to observe there is a significant
improvement in new model in relation to the previous ones.

We performed a second type of experiment related to
reuse mode using the best rules found by CA-based models
in the learning mode with gauss18 as the target graph. They
were applied in 10 distinct variations of this program graph.

These variations were presented in [7]; they are program
graphs with 18 tasks very similar to gauss18. In [7], CA-
based models with non-linear neighborhoods were evaluated.
Such kind of neighborhoods are much complex than the
linear used in CAS, SCAS and SCAS-IS, and they have
presented a good performance to deal with non-linear graphs
as gauss18. The best approach evaluated in [7], named
here ”Joint-CAS” uses a joint evolution in learning phase,
where 5 program graphs were used together with gauss18
to search for more generalized rules. Table IV presents a
comparative scheme between SCAS-IS, CAS and Joint-CAS
methods, besides meta-heuristics GA and SA. In learning
mode, SCAS-IS, Joint-CAS and CAS search for rules to
program graph gauss18. GA and SA presented the best
averages, but the advantage of SCAS-IS over meta-heuristic
algorithms is that the evolutionary process occur only once
and the knowledge extracted is used to schedule others
program graphs. Thus, the computational time is reduced (by
100 times approximately). SCAS-IS overcame CAS in all
instances, returning a better average. Performance of SCAS-
IS is still better than Joint-CAS in average. Besides, one
must take into account that Joint-CAS evolves 6 graphs
in learning consuming extra time and it uses sequential
updating and a complex and costly nonlinear neighborhood.

V. CONCLUSIONS

Our investigation about published CA-based scheduling
models have pointed some drawbacks in previous works: (i)
an inefficient employment of synchronous updating of CA
cells driving previous studies towards the usage of sequential
updating embarrassing fast parallel implementation of such
models; (ii) a difficult to employ simple linear models of
neighborhood what was a barrier to use an arbitrary number



Table IV
COMPARATIVE ANALYSIS BETWEEN RESULTS OBTAINED BY META-HEURISTICS AND CA-BASED MODELS IN REUSE MODE.

GP AG SA CAS Joint-CAS SCAS-IS
gauss18-6 47 47 48 47 48
gauss18-7 44 44 44 47 44
gauss18-8 44 46 47 47 47
gauss18-9 46 46 48 47 47

gauss18-10 44 45 44 47 44
gauss18-11 46 46 51 47 47
gauss18-12 47 47 48 47 48
gauss18-13 44 45 47 47 45
gauss18-14 46 46 48 47 47
gauss18-15 46 46 48 47 47

Average 45,40 45,80 47,30 47,00 46,40

of processors (iii) non effective reuse of evolved rules which
is the crucial point to justify the employment of cellular-
automata models in scheduling. In the present work a new
CA-based scheduler model named SCAS-IS (Synchronous
Cellular Automata-based Scheduler using fixed Initialization
Strategies) is presented. Some advantages of the new model:
(i) employment of synchronous updating with results com-
petitive with previous models based on sequential updating
(ii) usage of linear neighborhood which able the model to
use more than 2 processors in the architecture with good re-
sults in the learning phase (iii) usage of a new and simple ap-
proach to initialize CA lattices which turns the model more
likely to extract knowledge during a learning stage with a
posteriori use of this knowledge to solve new instances. The
major innovation is the usage of three simple initialization
strategies to start CA evolution instead of the employment
of a sample of random initial lattices as performed in
previous models (typically 1000 random lattices were used
previously). Apparently, the independence to initial lattices
turned previous models unable to be reused in new instances
of program graphs after the learning phase using a target
graph, since the CA rules evolved in learning phase tend to
evolve lattice to the same final configuration: the one which
optimizes the target graph. Experiments confirmed SCAS-IS
has much better performance to reuse CA rules compared to
previous related models. The scalability of the new model in
respect to the number of processors was investigated. Results
show that SCAS-IS overcame related models in learning
phase when the number of processor is increased above two.
In addition, SCAS-IS is competitive with the best results
found by meta-heuristics. The computation cost of the new
model was also reduced when compared to others models.
Forthcoming works include the analysis of SCAS-IS faced
to a high number of nodes in multiprocessor architecture
and the investigation of new models of neighborhoods.

ACKNOWLEDGMENT

M.G.C. thanks to CNPq and FAPESP for financial support
and G.M.B.O is grateful to CNPq and FAPEMIG.

REFERENCES

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems,
3rd ed. Springer Science, 2008.

[2] Y. K. Kwok and I. Ahmad, “Benchmarking and comparison
of the task graph scheduling algorithms,” Journal of Parallel
and Distributed Computing, vol. 59, no. 3, pp. 381–422, 1999.

[3] M. R. Garey and D. S. Johnson, Computers and Interactabil-
ity. A Guide to the Theory of NPCompleteness. Freemann
And Company, 1979.

[4] S. Jin, G. Schiavone, and D. Turgut, “A performance study
of multiprocessor task scheduling algorithms,” The Journal
of Supercomputing, vol. 43, pp. 77–97, 2008.

[5] F. Seredynski and A. Y. Zomaya, “Sequential and parallel
cellular automata-based scheduling algorithms,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 13, no. 10,
pp. 1009–1022, 2002.

[6] A. Swiecicka, F. Seredynski, and A. Y. Zomaya, “Multi-
processor scheduling and rescheduling with use of cellular
automata and artificial immune system support,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 17, no. 3,
pp. 253–262, 2006.

[7] P. M. Vidica and G. M. B. Oliveira, “Cellular automata-based
scheduling: A new approach to improve generalization ability
of evolved rules,” Brazilian Symposium on Artificial Neural
Networks (SBRN’06), pp. 18–23, 2006.

[8] G. M. B. Oliveira and P. M. Vidica, “A coevolutionary
approach to cellular automata-based task scheduling,” Lecture
Notes in Computer Science (accept to ACRI Conference -
Cellular Automata for Research and Industry), 2012.

[9] M. G. Carneiro and G. M. B. Oliveira, “Cellular automata-
based model with synchronous updating for task static
scheduling,” in Proceedings of 17th International Workshop
on Cellular Automata and Discrete Complex System, 2011,
pp. 263–272.

[10] M. Sipper, Evolution of Parallel Cellular Machines, The
Cellular Programming Approach. Springer, 1997.

[11] P. Sarkar, “A brief history of cellular automata,” ACM Comp.
Surveys, vol. 32, no. 1, pp. 80–107, 2000.


