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Abstract—Differently from traditional machine learning tech-
niques applied to data classification, high level classification
considers not only the physical features of the data (distance,
similarity or distribution), but also the pattern formation of the
data. In this latter case, a set of complex network measures are
employed because of their abilities to capture spatial, functional
and topological relations. Although high level techniques offer
powerful features, good classification performance is usually
obtained by combining them with some low level algorithms,
which, in turn, reduces the efficiency of the overall technique.
A priori, the reason is that low level and high level techniques
provide different visions of classification. In this way, one cannot
simply substitute another. This paper presents a data classification
technique in which low level and high level classifications are
embedded in a unique scheme, i.e., the proposed technique does
not need a separated low level technique. The novelty is the use
of a simple and recently proposed complex network measure,
named component efficiency. Thus, our algorithm computes the
efficiency of information exchanging among vertices in each
component and the resulting values are used to drive the
classification of the new instances i.e., a new instance will be
classified into one of the components (class), in which their local
features are in conformity with the insertion of the new instance.
The experiments performed with artificial and real-world data
sets show our approach totally based on complex networks is
promising and it provides better results than some traditional
classification techniques.

Keywords—high level classification, complex networks, data
classification, component efficiency measure, machine learning

I. INTRODUCTION

Complex networks have become one of the major research
themes in complex systems and have been employed in a wide
range of problems in many distinct fields of research (see [1]–
[5] for instance). They are graphs with non trivial connections
that gather concepts from statistics, complex systems and graph
theory (see [6]–[8]. Their ability to detect spatial, functional
and topological relations is also one of their most important
characteristics.

Although complex networks have already been used in a
large number of areas there are still plenty of tasks that could
be potentially helped by them, such as data classification. In
data classification, the techniques construct computer programs
able to learn from labeled data sets and, subsequently, predict
unlabeled instances [9]–[14] . Once there is a big number of
applications for this task, many data classification techniques
have been employed [15], such as the well-known decision

trees [16], [17], Naive-Bayes [18], Artificial Neural Networks
[19] and Support Vector Machines [20].

A drawback with these traditional machine learning tech-
niques is that they consider exclusively the physical features of
the data (eg. distance, similarity or distribution). This limited
way to classify is known as low level classification. On the
other hand, data classification algorithms that consider not
only physical attributes, but also the pattern formation are
referred to as high level classification [21]–[23]. These kind of
classification exploits complex network properties to obtain a
high level view on the data. As a motivation to investigate high
level algorithms, Fig. 1 shows a data set with a clear pattern
formation and everyone traditional algorithm is not able to
classify the magenta diamond according to this pattern because
they performs the classification only based on the data physical
attributes.

Fig. 1: Data set composed by data items of two classes (green
M and red ◦). Green data items present a clear pattern. Magenta
(♦) data item needs to be classified

Normally, data classification using high level approaches
can be divided into two phases: network construction and
prediction. In the first, the training data are represented as
a network in which each instance is a vertex and the edges
(or links) denote the similarity relations between vertices. The
techniques mostly used for this stage in the literature are K-
NN and ε-radius [24]. In the second phase, the aim is to explore
the network constructed in the first stage to classify new input
instances unseen in the training.

The high level classification was originally proposed in
[21], where a general framework that combines low and high
level algorithms is presented. However, the approach have



many parameters to set, especially for the network construction
(eg. K-NN and ε-radius techniques). A non parametric way to
construct the network in the high level classification is the
motivation of the work proposed in [22] and refined in [23]
that proposes also a high level algorithm without parameters,
a new complex network measure to high level classification,
named component efficiency, and a high level technique that
works on components instead the whole classes.

A commun characteristic of all these works related to high
level prediction is that despite the powerful characteristics
of the complex networks, the high level approach always is
combined with some low level algorithm. A priori, the reason
for this is that low level and high level techniques provide
different visions of classification. In this way, one cannot
simply substitute another.

On the other hand, our investigation shows an approach
totally based on complex networks, in which low level and
high level classifications are embedded in a unique scheme,
i.e., the proposed technique does not need a separated low level
technique. Thus, differently from the previous works about
high level classification, this paper presents a new approach
that uses exclusively network measures to perform a high
level classification. In fact, complex networks provide both
high level and low level features. Therefore, our technique
not is combined with everyone low level algorithm. This is an
advantage especially because the proposed algorithm considers
as the physical attributes as the pattern formation of the data
sets. In addition, the computational cost of our algorithm is
reduced because neither additional techniques nor parameters
are necessary.

In more details, the great novelty in our approach is the use
of a simple and recently proposed complex network measure
(component efficiency). Our algorithm computes how effi-
ciently the vertices in each component exchange information
among themselves and uses these analyses to drive the classi-
fication of the new instances. Consequently, the classification
process is guided by local features of the components and
also establishes a heuristic that excludes components that are
not in conformity with the insertion of the new instance.
Initial experiments on artificial and real-world data sets were
performed to evaluate the proposed technique. Simulations
have shown that our algorithm is able to detect physical and
topological relations on the components, is very robust to
provide low level and high level features, and can find better
results than some traditional machine learning techniques.

The remainder of the paper is organized as follows. The
proposed technique and the contributions of this investigation
are detailed in Sect. II. Empirical evaluation and discussions
about the proposed algorithm on artificial and real data sets
are showed in Sect. III. Finally, Sect. IV concludes the paper.

II. MODEL DESCRIPTION

Considering the machine learning field, graph-based tech-
niques have been widely employed in the context of unsuper-
vised [4], [24] and semi-supervised learning [25]–[27], espe-
cially in problems related to clustering, transductive learning
and dimensionality reduction. However, the investigation of
complex network-based techniques for supervised learning is

recent [21]–[23], [28], [29] and the results obtained show com-
plex networks are very effective when applied to supervised
learning problems, such as data classification and features
selection.

This paper offers a new view about the high level data
classification. Previous studies have combined high level and
low level classifications, as a framework, to obtain good
classification performance. The motivation of them is that both
low level and high level techniques provide different visions
of classification. In this way, we present a data classification
technique in which low level and high level classifications are
embedded in a unique scheme, i.e., the proposed technique
does not need a separated low level technique. The advantages
of this approach are the reduction in the computational cost, the
absence of parameters and mainly the exploitation of complex
network measures in the whole classification process.

Basically, the proposed technique has three major steps: (i)
construction of the network in the training phase, (ii) filtering
of components to be considered for each new instance and
(iii) the application of complex network measures to perform
the high level classification. Initially, the network is generated
from the k-associated optimal graph proposed in [28]. In
the following step, the high level algorithm uses a complex
network measures, named component efficiency measure to
verify what the components where each new instance can be
inserted. In the third step, the high level algorithm is applied to
classify new instances by checking the variation of complex
network measures in each component [filtered by step (ii)]
before and after the insertion of the new instance.

In this section, the high level technique totally based on
complex networks is mathematically defined. For the sake of
clarity, it was divided into two subsections: Subsect. II-A,
which describes how work the high level algorithm, and
Subsect. II-B, which provides the major novelty of this paper:
the use of a complex network measure, named component
efficiency [23], to drive the classification process.

A. High Level Technique

The high level classification of a new instance y for a given
class j, is given by:

C(j)
y =

max
Cαy ∈j

H
(α)
y∑

j max
Cαy ∈j

H
(α)
y

, (1)

where α ∈ j denotes all components that belong to class
j and C

(j)
y ∈ [0, 1] receives the highest value of H

(α)
y ,

such that α ∈ j, divided by a normalization term. The
idea is very simple: from the filtered components of y, the
high level technique examines these components in a way
that the algorithm associates the new instance y with the
more compatible component for each class and computes the
classification probabilities for them.

In (1), H(α)
y means the compatibility of each component

α with the new instance y and is given by:

H(α)
y =

∑Z
u=1 δy(u)[1− f (α)

y (u)]∑
g∈L

∑Z
u=1 δy(u)[1− f (g)

y (u)]
, (2)



in which u is related to the network measures employed in the
high level algorithm, δy(u) ∈ [0, 1], ∀u ∈ {1, . . . , Z} indicates
the influence of each network measure in the classification
process and f

(α)
y (u) provides an answer whether the test

instance y presents the same patterns of the component α or
not, considering the u-th network measure. The denominator
term in (2) is only for normalization.

An automatic way for the weight assignment among the
employed network measures, i.e., the δ term in Eq. (2) is
presented in [23] and determined by:
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1− (max

α
∆G

(α)
y (u)−min

α
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α
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(α)
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,

(3)
where ∆G

(α)
y (u) ∈ [0, 1] represents the variation that occurs in

a complex network measure whenever a new instance y ∈ Y
is inserted. This definition is important because it does not
allow only one network measure to dominate the classification
decision. Note that term δ is valid only if

∑K
u=1 δy(u) = 1.

About f (j)
y (u), it is given by:

f (α)
y (u) =

∆G
(α)
y (u) p(α)∑

α
∆G

(α)
y (u) p(α)

, (4)

in which ∆G
(α)
y (u) ∈ [0, 1] represents the variation that occurs

in a complex network measure whenever a new instance y ∈ Y
is inserted and p(α) ∈ [0, 1] is the proportion of instances that
belong to component α.

Complex network measures are used to provide a high level
analysis of the data [30]. When a new instance y needs to be
classified, the technique computes the impact by inserting this
new vertex for each filtered component in an isolated way.
Basically, the variation in the results in network measures
indicates which is the component that y belongs. In other
words, if there is a little variation in the pattern formation of
that component when connecting y to it, a high level prediction
returns a high value indicating that y is according with this
pattern. In the opposite, if there is a great variation when
linking y to a component, it returns a small value denoting
that y is not according with this pattern.

In this work, three network measures are employed to
check the pattern formation of the input data: assortativity,
clustering coefficient and average degree [31].

1) Assortativity: The assortativity measure quantifies the
tendency of connections between vertices [31] in a complex
network. This measure analyzes whether a link occurs pref-
erentially between vertices with similar degree or not. The
assortativity with regards to each component α of the data set
is given by:

r(α) =

L−1
∑
u∈Uα

iuku − [L−1
∑
u∈Uα

1
2 (iu + ku)]2

L−1
∑
u∈Uα

1
2 (i2u + k2

u)− [L−1
∑
u∈Uα

1
2 (iu + ku)]2

(5)

where r(α) ∈ [−1, 1], Uα = {u : iu ∈ α ∧ ku ∈ α}
encompasses all the edges within component α, u represents

an edge, and iu, ku indicate the vertices at each end of edge
u.

Therefore, the membership value of a test instance y with
respect to the component α is given by:

∆G(α)
y (1) =

| r′(α) − r(α) |∑
u∈U
| r′(u) − r(u) |

, (6)

2) Clustering Coefficient: Clustering coefficient is a mea-
sure that quantifies the degree at which local nodes in a
network tend to cluster together [6]. The clustering coefficient
with regards to each component α of the data set is given by:

CC
(α)
i =

| eus |
ki(ki − 1)

, (7)

CC(α) =
1

Vα

Vα∑
i=1

CC
(α)
i , (8)

in which CC(α)
i ∈ [0, 1] and Vα denotes the number of vertices

in component α. Thus, the membership value of a test instance
y with respect to the component α is given by:

∆G(α)
y (2) =

| CC ′(α) − CC(α) |∑
u∈U
| CC ′(u) − CC(u) |

. (9)

3) Average Degree: The average degree is a very simple
measure. It quantifies, statistically, the average degree of the
vertices in a component. The average degree with regards to
each component α is given by:

〈k(α)〉 =
1

Vα

Vα∑
i=1

k
(α)
i , (10)

in which k(α) ∈ [0, 1] and Vα denotes the number of vertices
in component α. Regarding the membership value of a test
instance y ∈ Y with respect to component α, it is given by:

∆G
(α)
i (3) =

| 〈k′(α)〉 − 〈k(α)〉 |∑
u∈Γ

| 〈k′(u)〉 − 〈k(u)〉 |
(11)

B. The Unified Approach

The great novelty in this paper is the use of a simple
and recently proposed complex network measure, named com-
ponent efficiency, to drive the classification process. In this
way, our algorithm computes the efficiency of exchanging
information between the vertices of each component and the
resulting values of this network measure are used to drive the
classification of the new instances i.e., a new instance will
be classified in one of those components (class), in which
their component efficiency measures are in conformity with
the insertion of the new instance.



1) Component Efficiency Measure: Motivated by the con-
cept of efficiency of a network [32], the component efficiency
measure was proposed in [23] and it quantifies the average
efficiency of the component in sending information between
its vertices, i.e., it measures how efficiently each component
exchanges information internally.

Initially, suppose a vertex i in a component α. The average
efficiency of i is given by:

E
(α)
i =

1

Vi

∑
t∈Λi

qit, (12)

where Vi denotes the number of links from i, Λi represents
the vertex that receives links from i and qit is related to the
local geodesic distance (similarity) between i and t.

The efficiency of a component α is the average of the local
efficiency of the nodes that belong to α. So, we have:

E(α) =
1

Vα

Vα∑
i=1

E
(α)
i , (13)

where Vα is the number of vertices in component α.

2) Filtering Components: Suppose a new instance y will
be classified. Differently from other high level approaches, the
proposed technique employs the component efficiency measure
to determine the components which their efficiency are into
to the minimal local efficiency of y. This information is
important especially because it considers the local features
of the components and establishes a heuristic that excludes
components that are not in conformity with the insertion of y
into them.

In a more formal definition, let us consider a component α
and a set L related to the components in which the variations
of complex network measures will be computed. For each new
instance y, Ly is given by:

Ly ⇐ Ly ∪ {α | min e(α)
y ≤ E(α)}, (14)

where e(α)
y denotes the local efficiency of y to each vertex that

belongs to component α and E(α) is the component efficiency
of α.

The next phase is the insertion of y in each α ∈ Ly .
According to our technique, y makes connections with each
vertex i ∈ α following the equation given by:

αy ⇐ α ∪ {i | e(i)
y ≤ E(α)}, (15)

where αy includes component α and the connections between
y and their vertices, e(i)

y is the local efficiency in exchanging
information between y and i, and e(i)

y ≤ E(α) is the condition
to be satisfied to assure a link between y and i.

Let us now show the implications from (14) and (15):

• once the component efficiency measure works on the
geodesic distance between the vertices, there are some
features of the low level algorithm on it;

• by considering the minimal local efficiency of y in
a component α, the proposed technique carefully
selects a good Ly set, avoiding the exclusion of those

components which y is in conformation in the high
level classification process;

• the local efficiency of the vertices extends the concept
of the constructed network by considering not only the
nearest neighbors of y, but also features related to the
component efficiency in the exchange of information
among the vertices of the component. Intuitively, this
is an implicit combination between high level and low
level features.

3) Algorithm: A general view about the unified approach
proposed in this paper is given by the Alg. 1. The technique
receives as input the data set (X), which is divided in training
data set (XTrain) and test data set (XTest). In the first line,
the algorithm uses the k-associated optimal graph to obtain
a network from XTrain. In this context, G and Λ denote,
respectively, the constructed network, where G = {V,E}
describes the sets of vertices and edges and Λ comprehends
all components in G. In the second line, the complex network
measures (assortativity, clustering coefficient and average de-
gree in this paper) are computed on each component α ∈ Λ,
so M describes the results of applying these network measures
to the components. There is a loop in the line three from
which all test instances (y ∈ XTest) are considered. In the
fourth line, the technique employs the component efficiency
measure to provide low level and high level information.
Consequently, by definitions (14) and (15), Gy denotes each
component αy which is in conformity with the insertion of y,
such that αy ∈ Gy . In the fifth line, the technique computes the
complex network measures variations for these components.
Thus, ∆Gy denotes the set of network measures variations on
each component αy , such that ∆G

αy
y (.) ∈ ∆Gy . Finally, the

sixth line provides the classification probabilities of y in each
class j. Obviously, the technique classifies y for the class with
the highest probability.

Algorithm 1 Unified High Level Approach

Require: data set X: XTrain, XTest

1: G, Λ ⇐ Construct Network (XTrain)
2: M ⇐ Complex Network Measures (Λ)
3: for each y in XTest do
4: Gy ⇐ Filter Component Efficiency (Λ,y)
5: ∆Gy ⇐ Complex Network Measures Variations (Gy)
6: Cjy ⇐ High Level Classification (∆Gy)
7: end for

Note that if Ly = ∅ in (14) (very unusual situations),
the algorithm employs the kα value associated with each
component α ∈ Λ and verifies what the vertices in α are one
of the kα-nearest neighbors of y. If there is at least one vertex
that satisfies this condition in component α, then the complex
network measures are applied to this component, otherwise α
is unconsidered in the classification phase.

III. EXPERIMENTS AND DISCUSSION

This section presents a set of empirical evaluations to
analyze the performance of our proposal. It is divided into two
subsections: Subsect. III-A discusses the results of artificial
data sets, emphasizing some important characteristics of the
new high level approach that make its classification more



robust than those of another low level algorithms; and Subsect.
III-B provides simulations on real-world data sets, showing
the proposed technique is applicable to practical situations,
especially because it can find competitive results with tra-
ditional machine learning techniques and it does not have
parameters. Note that the Euclidian distance is used as the
similarity measure in all experiments. In addition, our high
level technique is referred to in this section as HL.

A. Artificial Data Sets

Computer simulations are performed to evaluate the pro-
posed technique on artificial data sets, which are characterized
by showing strong patterns. They provide particular situations
in which traditional classifiers have trouble to correctly classify
the data items in the test set. Moreover, this subsection
emphasize the great features of our totally based on complex
networks algorithm, which also serves as a tool for better
motivating the usage of the new approach.

1) Binary-Class Data Set I: The first experiment is per-
formed with the data set showed in Fig. 1. One can see the
green (M) class data items exhibit a strong pattern. Since
the traditional machine learning techniques are not able to
consider the pattern formation of classes, they cannot classify
the test instance y (magenta ♦ vertex) correctly. Moreover,
these techniques consider only the physical distance among
the data items, which contributes to classify y as belonging
to red class (◦). On the other hand, previous high level
algorithms perform the classification of y by considering or an
ε-radius variable [21] or by computing the network measures
variations for all graph components [23]. The drawbacks of
these algorithms are, respectively, the necessity of parameter
selection for the classification stage (few variations in the
parameters generate very different results) and a smaller force
in terms of classification probabilities of y for each class j,
especially because the network measures are computed on all
components and for each is associated one probability Pj , such
that

∑
j Pj = 1.

However, differently from traditional techniques, HL is
able to detect the clear pattern in Fig. 1 by following the
steps in Alg. 1. Moreover, differently from other high level
algorithms, HL does not use any parameter and it produces a
stronger representation in terms of classification probabilities
of instance y in the components, especially because it provides
a heuristic that reduces the number of components to which
the network measures are applied.

2) Binary-Class Data Set II: A very interesting data set
is showed in Fig. 2. There are data items of the two classes:
red (◦) and green (M), and a new instance y (magenta ♦) to
be classified. Intuitively, red data items exhibit a straight line
pattern. However, traditional techniques classify y in the green
class because they perform data classification considering
only the physical attributes of the data. Another important
characteristic of this data set is that y is very close to the
green data items and the red data items are distant among them.
Thus, a high value of ε will be necessary to allow the high
level classification to detect this pattern. Also, the combination
of low level and high level algorithms requires a great portion
of the high level classification to perform a correct prediction.
Again, HL is able to correctly detect this pattern without the

use of parameters because its component efficiency measure
offers more than low level features: it also provides high
level information about the structure and topology of each
component.

Fig. 2: Data set composed by data items of two classes: red (◦)
and green (M). Magenta (♦) data item needs to be classified.
Red data items form a straight line.

3) Multi-Class Data Set: Fig. 3a shows a multi-class data
set with five classes. Each class is denoted by a symbol and a
color: M (red), × (green), ◦ (blue), O (yellow) and � (black).
Four classes (red, green, yellow and black) are obtained from
Gaussian distributions and the blue class exhibits a strong
pattern of circunference. In the figure, there is a new instance
to be classified (represented by the symbol ♦ and the magenta
color). At the first moment, this is a very easy classification
problem, especially because the classes are linearly separable.
Obviously, traditional techniques can predict the label cor-
rectly.

However, considering a more applicable scenario, we know
data sets not present so representative information as in Fig.
3a. Once the number of instances can influence the represen-
tativeness of the information inherent to the data sets, when
there is some absence of this information, the pattern formation
is not so easy to predict from traditional machine learning
techniques, especially because they work only on physical
attributes of the data. As a way to show this in a practical
situation, some labeled data items are removed from the data
set showed in Fig. 3a to obtain the data set exhibited in Fig.
3b.

Despite one can observe the pattern formation of blue
class (circunference) also remains strong in Fig. 3b, now
traditional algorithms are not able to classify the new instance
correctly. On the other hand, our high level technique detects
this formation pattern correctly. In a general context, this
experiment emphasizes our technique is less sensitive to the
absence of information in data sets because it exploits relations
among the vertices from distinct visions of the data items
(through of complex network measures). Intuitively, this makes
the technique more robust to identify formation pattern of the
data. In a specific context, our algorithm did not divide the data
items in classes, but in graph components, i.e., our technique
work on a more operational level, in which it is able to capture
important information about the formation pattern of the data
sets.



(a) (b)

Fig. 3: Data sets composed by data items of five classes (M - red, × - green, ◦ - blue, O - yellow and � - black). Blue data
items present a clear pattern of a circunference. Magenta diamond needs to be classified in the two data sets: (a) a data set with
big representativity of the instances; (b) a data set with some absence of information, but also with clear formation pattern.

B. Real-World Data Sets

We also have conducted computer simulations on real-
world data sets. The objective is to analyze the features
of our technique in real data sets and evaluate its perfor-
mance in comparison to two traditional and widely employed
techniques: Decision Tree (DT) and Support Vector Machine
(SVM). These traditional techniques are available in the
python machine learning module named Scikit Learn [33].
Grid search algorithm was employed to select parameters for
those techniques. Following, we give more details about the
process of tuning the parameters of the traditional algorithms.
About the decision tree algorithm, Scikit Learn provides an
optimized version of the CART algorithm. Two parameters
are configured in these experiments: the minimum density over
the set {0,0.1,0.25,0.5,0.8,1}, which controls a trade-off in an
optimization heuristic, and the minimum number of samples
required to be at a leaf node, here denoted as m, which is
optimized over the set m ∈ {0,1,2,3,4,5,10,15,20,30,50}. In
Support Vector Machine (SVM) simulations, we reduce the
search-space for the optimization process by fixing a single
well-known kernel, namely Radial Basis Function (RBF) ker-
nel. The stopping criterion for the optimization method is
defined as the Karush-Kuhn-Tucker violation to be less than
10−3. For each data set the model selection is performed by
considering the kernel parameter γ ∈ {24,23,. . . ,2−10 } and
the cost parameter C ∈ {212,211,. . . ,2−2}. Our high level
approach does not use parameters, so, it not need of a step
to tune parameters.

Four real-world data sets have been employed in the
experiments: Ecoli, Iris, Optical Recognition of Handwritten
Digits and SPECTFHeart. These data sets are available in UCI
[34] and KEEL [35] repository. A brief introduction about
them is given as follows:

• Ecoli data set: this data set address the problem of
classifying proteins into their various cellular localiza-
tion sites based on their amino acid sequences. Pro-
teins can be classified in eight classes and the number
of attributes, which were calculated from amino acid

sequences, is 71. related to distinct sequence names
for each instance and. Also, Ecoli has 336 instances.

• Iris data set: this is a well known data set in the
machine learning literature. It provides labeled data
items from three different classes of iris plant. There
are 4 attributes that are related with the lenght and
width of the plant sepal and petal. Iris contains 150
instances.

• Optical Recognition of Handwritten Digits or Opt.
Digits data set: this is a data set obtained from
the contribution of fourty three people. Preprocessing
programs made available by NIST was used to ex-
tract normalized bitmaps of handwritten digits from a
preprinted form. 32x32 bitmaps are divided into non-
overlapping blocks of 4x4 and the number of on pixels
are counted in each block. This generates an input
matrix of 8x8 where each element is an integer in the
range 0..16. Opt. Digits has 64 attributes and 5624
instances.

• SPECTFHeart data set: the dataset describes diag-
nosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images. Each of the patients is
classified into two categories: normal and abnormal.
The database of 267 SPECT image sets (patients)
was processed to extract features that summarize the
original SPECT images. SPECTFHeart contains 44
attributes.

Tab. I provides the meta-data of the data sets employed and
the results yielded by each algorithm averaged over thirty runs
using the stratified 10-fold cross-validation process [36]. In
order to analyze statistically the results, we adopted a statistical
test that compares multiple classifier over multiple data sets
[37]. Firstly, Friedman test is calculated to check whether the
performance of the classifiers are significantly different. Using
a significance level of 5%, the null hypothesis is rejected.
This means that the algorithms under study are not equivalent.

1Originally, this data set contains 8 attributes. The “sequence name” attribute
was removed because it does not make sense for the classification task



TABLE I: Comparative results provided by HL, DT and SVM on four real-world data sets. “Acc” and “Std.” denote, respectively,
the average of accuracy and the standard deviation over thirty runs using the stratified 10-fold cross-validation process.

Domain Meta-data HL DT SVM
Name #Instances #Attributes #Classes Acc. ± Std. Acc. ± Std. Acc. ± Std.

Ecoli 336 7 8 85.28 ± 6.69 80.78 ± 5.55 87.23 ± 5.22
Iris 150 4 3 97.13 ± 3.82 93.60 ± 5.59 96.28 ± 4.02

Opt. Digits 5620 64 10 98.59 ± 0.47 90.27 ± 1.27 99.26 ± 0.33
SPECTFHeart 267 44 2 78.76 ± 3.21 75.41 ± 6.20 78.01 ± 3.92

Following a post-hoc test, Nemenyi test is employed (also
considering a significance level of 5%). The results of this
test allow concluding that our technique is highly able to find
competitive results in comparison with the SVM algorithm
(statistically equivalent). Also, Nemenyi test indicates HL and
SVM outperform DT algorithm. These results are satisfactory,
especially because HL does not need any low level algorithm
to perform a good classification. In addition, this suggests
complex network measures are able to provide as high level
as low level features. Moreover, our structure based on the
component efficiency measure offers extra information about
the patterns of the data set which help HL in the classification
and which low level algorithms are not able to do. Note also
that selection of parameters is not necessary in our approach.

IV. CONCLUSION

This paper has provided a new approach for high level data
classification. Differently from previous works, the proposed
technique does not perform a combination between low level
and high level algorithms. Instead, low level and high level
features are embedded in a unique scheme composed only of
complex network measures. The advantages are the reduction
in the computational cost because no one low level algorithm is
required, the absence of parameters and mainly the exploitation
of complex network measures in the whole classification
process.

The novelty of our technique is the use of a recently
proposed complex network measure, named component effi-
ciency. Basically, it computes how efficiently the vertices in
each component exchange information among themselves and
it uses these resulting values to drive the classification of the
new instances. In other words, a test instance will be classified
in one of the components (class), in which their local features
are in conformity with its insertion. This process also reduces
the computational cost because it establishes a heuristic that
excludes of the classification those components that are not in
conformity with the insertion of new instance into them.

Empirical experiments and statistical tests have been pro-
vided to evaluate the proposed technique. Firstly, artificial data
sets have been considered. In these data sets, experiments
show traditional machine learning techniques, such as DT
and SVM, can not to detect the patterns formation of the
data because they perform the classification based only on
physical attributes. The simulations emphasize some features
of the new approach in relation to previous works about high
level classification, such as the independence of parameters and
the filtering of the components to the prediction phase which
makes the classification more powerful. Secondly, real-world
data sets have been analyzed too. Although we have tuned
the parameters of DT and SVM algorithms, the high level

algorithm totally based on complex networks has been able to
find competitive results in comparison with these traditional
algorithms. Moreover, our technique has outperformed DT al-
gorithm in all data sets used. Forthcoming works include more
detailed investigations about each stage of our technique in
order to improve its computational efficiency and classification
performance. In addition, more comparisons with another start-
of-the-art algorithms will be performed.
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