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Abstract—In this paper, we aim to study the usage of different
network formation methods into a graph embedding framework
to perform supervised dimensionality reduction. Images are
often high-dimensional patterns, and dimensionality reduction
can enhance processing and also increase classification accuracy.
Specifically, our technique maps images into networks and
constructs two network adjacency matrices to convey information
about intra-class components and inter-class penalty connections.
Both matrices are inserted into an optimization framework in
order to achieve a projection vector that is used to project
high-dimension data samples into a low-dimensional space. One
advantage of the technique is that no parameter is required,
that is, there is no need to select a model for the input data.
Applications on handwritten digits recognition are performed,
and the proposed technique is compared to some classical net-
work formation methods. Numerical results show the approach
is promising.

Keywords- Dimensionality reduction; network-based learning;
supervised learning; marginal fisher criterion.

I. INTRODUCTION

Many applications in data mining, machine learning and
pattern recognition face problems when computing similarities
among data samples. When data lies in a high-dimensional
space, these problems are often due to the “curse of dimen-
sionality” [1]. In this situation, similarity measures among
data suffers from distortions, that is, when the dimensionality
increases, the volume of the space increases so fast that
the available data samples becomes sparse. Specially, this
situation is often found when dealing with images, which
possess a large dimensional feature space, that is, images are
high-dimensional patterns. One way to alleviate this problem
is by performing dimensionality reduction, which aims at
reducing the dimension of the input data in order to achieve
a small set of features that keeps the most important original
relationships among data samples. This reduction can enhance
image processing and also increase the classification accuracy
[2], [3], [4], [5].

Techniques for dimensionality reduction often lie in the
unsupervised or in the supervised learning. A classical ex-
ample of unsupervised technique is the Principal Component
Analysis (PCA) [6]. PCA is an orthogonal transformation that
represent data by using the so called principal components.
Usually, a small number of principal components is sufficient
to account for most of the structure in the data. It maximizes

the mutual information between the original high-dimensional
Gaussian distributed measurements and the projected low-
dimensional measurements. As an unsupervised technique,
PCA does not use the class label information of the input
data. In the supervised setting, data instances are marked
with label information that guides the formation of the low-
dimensional space. The labels often take discrete class values,
indicating which data points have to be grouped together (same
class) or set far apart from the other (different classes) in the
embedded space. In the group of supervised techniques, Linear
Discriminant Analysis (LDA) [7] plays an important role. As
a supervised technique, it uses the class label information of
the input data samples. LDA finds a projection matrix that
maximizes the trace of the between-class scatter matrix and
minimizes the trace of the within-class scatter matrix in the
projected subspace simultaneously.

Supervised dimensionality reduction can also be performed
by using a graph embedding framework [8]. Graphs are
powerful tools to represent data relationships and have been
applied to a variety of learning tasks [9], [10], [11], [12],
[13]. The purpose of graph embedding is to represent each
vertex (data sample) of a network as a low-dimensional
vector that preserves similarities between the vertex pairs,
where similarity is measured by a graph similarity matrix that
characterizes certain statistical or geometric properties of the
data set. The usage of graph embedding for dimensionality re-
duction can overcome some limitations of the LDA technique
such as the number of available projection directions lower
than the number of classes, and the assumption that data is
approximately Gaussian distributed [8].

In this paper, we study the usage of the recently proposed
k-Associated Optimal Graph (KAOG) [14] into the graph em-
bedding framework for dimensionality reduction. The KAOG
is a network construction technique which relies on two con-
cepts: a purity measure, which uses the graph representation to
measure mixing levels of the original data samples regarding
their classes given a k-neighborhood; and the k-associated
graph, which can be considered as an improved adaptive k-
Nearest Neighbor (k-NN) graph. The network construction
process consists of building the k-associated optimal graph,
that represents the data set as a sparse network in which
components carry local information about the underlying data
distribution [14]. Furthermore, we propose a modification of



the KAOG network formation to construct a penalty graph,
which is required for the graph embedding framework. The
penalty graph conveys information about which data samples
(class components) should not be close together (different
classes) in the reduced feature space. The proposed technique
is compared to two classical network construction methods:
k-NN and ε-radius.

This paper is organized as follows. Section II introduces
the problem setting of dimensionality reduction. Section III
describes the network formation methods to construct the
scatter-matrices to be used into the graph embedding frame-
work. Section IV shows the experimental results and section
V concludes the paper.

II. DIMENSIONALITY REDUCTION PROBLEM SETTING

In this paper, we consider that it is given a training data
set X (l) = {x(l)

i , i = 1, . . . , n}, containing labeled images,
and a test data set X (u) = {x(u)

i , i = 1, . . . ,m}, containing
unlabeled images. Each image is described by q attributes, that
is, a vector xi = [xi1, xi2, . . . , xiq]

T , and belongs to a single
class c ∈ {1, . . . , C}, where C is the number of classes. The
goal of the proposed technique is to perform dimensionality
reduction by using the information provided by the labeled
data set X (l) in order to improve classification accuracy or, at
least, to speed up the classification process of the unlabeled
data set X (u) without decreasing the accuracy, given that a
small number q′ of projected attributes is used (q′ < q).

Usually, the image feature dimension q can be very high,
and transforming the data from the original high-dimensional
space to a low-dimensional space can alleviate the curse of
dimensionality [1]. To accomplish that, a technique should find
a mapping function F that transforms x into the desired low-
dimensional representation y, so that y = F (x) (y ∈ Rq′ ).
By using an underlying network to find such function F , the
dimensionality reduction process can be viewed as a graph-
preserving criterion of the following form [8]:

Y ∗ = argmin
∑
i 6=j

||yi − yj ||2Wij = argminY TLY, (1)

constrained to Y TBY = d. In this formulation, d is a constant
vector, Wij is the adjacency matrix of the network, B is the
constraint matrix and L is the Laplacian matrix. The Laplacian
matrix can be found via the following operation:

L = D −W, Dii =
∑
i 6=j

Wij ,∀i.

The constraint matrix B can be viewed as the adjacency
matrix of a penalty network WP , so that B = LP =
DP −WP . The penalty network conveys information about
which vertices should not be linked together, that is, which
instances should be far apart after the dimensionality reduction
process. The similarity preservation property from the graph-
preserving criterion has a two-fold explanation. For larger
similarity between samples xi and xj , the distance between yi
and yj should be smaller to minimize the objective function.

Likewise, smaller similarity between xi and xj should lead to
larger distances between yi and yj for minimization [8].

In this paper, we assume that the low-dimensional attribute
space can be found by using a linear projection such as
Y = XTw, in which w is the projection vector. The objective
function in Eq. 1 becomes:

w∗ = argmin
∑
i 6=j

||wTxi −wTxj ||2Wij

= argminwTXLXTw, (2)

constrained to wTXLXTw = d. By using the Marginal
Fisher Criterion [8] and the penalty network constraint, Eq.
2 becomes:

w∗ = argminw
wTXLXTw

wTXLPXTw
, (3)

which can be solved by the generalized eigenvalue problem
by using the equation XLXTw = λXLPXTw.

III. NETWORK FORMATION TECHNIQUES

The construction of the underlying networks is an elemen-
tary step of the proposed dimensionality reduction technique.
In the literature, there are a few techniques related to network
construction. The most used techniques are ε-radius and k-
Nearest Neighbors (k-NN) [15]. However, both require pa-
rameter selection. On the other hand, a recently proposed
technique, KAOG, provides a network that is constructed from
a purity measure, without requiring the usage of parameter
selection [14], [10].

In the next subsections, we provide the concepts related to
each network formation technique and propose the adaptations
that we develop to employ them in a new dimensionality re-
duction technique. We also illustrate the constructed networks
by using each algorithm for the artificial data set showed in
Fig. 1.

Fig. 1: Artificial data set composed of two mixed gaussians.



A. ε-Radius Network

In data classification, the ε-radius technique creates a link
between two vertices i and j if two conditions are satisfied:
i and j are within a distance ε and they belong to the same
class:

E = E ∪ {ei,j | di,j ≤ ε & ci = cj} (4)

The ε-radius technique provides a network with higher
density when compared to other graph formation techniques.
An example of the ε-radius network is illustrated in the Fig.
2, which presents the network formation using the data set
showed in Fig. 1. Note that there are a large number of links
among the vertices.

Fig. 2: Network constructed from ε-radius technique on a data
set of two mixed gaussians. ε = 30% of the average distance
among all vertices.

As explained in section II, our technique requires the
construction of two matrices: the adjacency matrix and the
penalty matrix. The adjacency matrix (E) is obtained directly
from (4). Alg. 1 presents a simple way to obtain the penalty
matrix B. The algorithm creates a link between i and j in B
if the vertices are within a distance ε and belong two different
classes. In this case, a link means that these vertices should
be far apart after the dimensionality reduction process.

Algorithm 1 ε-radius algorithm

Require: ε and a data set X
1: E,B ⇐ ∅
2: for all i, j ∈ X do
3: if di,j ≤ ε & ci = cj then
4: E ⇐ E ∪ ei,j
5: else if ci 6= cj then
6: B ⇐ B ∪ ei,j
7: end if
8: end for
9: return E and B

B. k-NN Network

The k-NN network construction creates a link between
vertices i and j if two conditions are satisfied: j is one of
the k-nearest neighbors of i and the classes of i and j are the
same, as showed by 5:

E = E ∪ {ei,j | j ∈ K-NN(i) & ci = cj}. (5)

Unlike ε-radius network formation, k-NN is able to rep-
resent sparse regions of the network. Fig. 3 illustrates the
application of the k-NN technique on the data set showed in
Fig. 1. Note that vertices in sparse regions, which do not link
using ε-radius technique (Fig. 2), are able to make connections
using k-NN formation graph.

Fig. 3: Network constructed from k-NN technique on a data
set of two mixed gaussians. k = 3.

We propose a simple way to obtain the penalty matrix B
for the k-NN network as follows. There is a link from i to j
in B only if the j is one of the k-nearest neighbors of i and
their classes are distinct. In consequence, the adjacency matrix
E is obtained from (5). Alg. 2 presents the steps to obtain E
and B.

Algorithm 2 k-NN algorithm

Require: K and a data set X
1: E,B ⇐ ∅
2: for all i, j ∈ X do
3: if j ∈ K-NN(i) & ci = cj then
4: E ⇐ E ∪ ei,j
5: else if ci 6= cj then
6: B ⇐ B ∪ ei,j
7: end if
8: end for
9: return E and B

C. KAOG Network

Differently from usual graph formation techniques, the
KAOG technique constructs a network guided by a measure



Algorithm 3 k-Associated Optimal Graph

Require: data set X
1: k ⇐ 1
2: G(op) ⇐ k-associated graph(k,X) (Algorithm 4)
3: repeat
4: lastAvgDegree⇐ D(k)

5: k ⇐ k + 1
6: G(k) ⇐ k-associated graph(k,X)

7: for all C(k)
β ⊂ G(k) do

8: if Φ
(k)
β ≥ Φ

(op)
α for all C(op)

α ⊆ C(k)
β then

9: G(op) ⇐ G(op) − ∪
C

(op)
α ⊆C(k)

β

C
(op)
α

10: G(op) ⇐ G(op) ∪ {C(k)
β }

11: end if
12: end for
13: until D(k) − lastAvgDegree < D(k)/k
14: return G(op)

named purity. This measure expresses the level of mixture of a
component in relation to other components of distinct classes
and it is given by:

Φα =
Dα

2Kα
, (6)

where Dα and kα denote, respectively, the average degree
and the k value associated to the component α. In this way,
KAOG uses the purity measure to construct and optimize each
component of the network.

Algorithm 3 shows step by step the construction of KAOG
networks. Note that no parameter is needed by the algorithm.
After the initial setting, a loop starts to merge the subsequent
k-associated graphs by increasing k, while improving the
purity of the network encountered so far, until the optimal
network measured by the purity degree is reached. Basically,
the k-associated graph (KAG) algorithm links a vertex (image)
i to all its k-nearest neighbors that belong to the same class
of i (a set denoted by Λi,k). More details about the algorithm
are presented in [14].

Furthermore, we develop a fast way to obtain the penalty
matrix B for the KAOG network as follows. There is a link
between i and j in B if j is one of the k nearest neighbors of
i, and j belong to a different class of i. Alg. 4 shows step by
step how the links of the adjacency matrix E and the constraint
matrix are done in the k-associated graph. It is worth noting
that the constraint matrix is optimized by the purity measure
too.

Figure 4 illustrates the construction of the KAOG network
in a data set composed by two mixed gaussians. The resulted
network is distinct from the ε-radius and k-NN techniques. The
main advantages on these algorithms is that KAOG network
is obtained without any parameter. In addition, its vertices are
linked according to the maximization of the purity measure.
This provides an optimized network and a robust mechanism
to avoid noisy and outliers [14].

Algorithm 4 k-Associated Graph

Require: k and a data set X
1: E,B ⇐ ∅
2: for all i ∈ V do
3: if j ∈ Λi,k & ci = cj then
4: E ⇐ E ∪ ei,j
5: else if ci 6= cj then
6: B ⇐ B ∪ ei,j
7: end if
8: end for
9: C ⇐ findComponents(E)

10: for all α ∈ C do
11: Φα ⇐ Eq. (6)
12: G(k) ⇐ G(k) ∪ {(α(V ′, E′, B′); Φα)}
13: end for
14: return k-associated graph G(k)

Fig. 4: Network constructed using the non-parametric KAOG
technique on a data set of two mixed Gaussians.

IV. EXPERIMENTAL RESULTS

The proposed dimensionality reduction technique was eval-
uated by using the KAOG network formation method as
described in Sec. III. The proposed technique was also com-
pared to other two well-known network formation methods,
k-NN and ε-radius. After the dimensionality reduction step,
the projected data set was classified by using the 1-nearest-
neighbor classification rule. In the experiments, we applied
the techniques to the handwritten digits recognition. The data
set used was the Binary Alphadigits available online1. The
data set contains binary 20x16 digits of “0” through “9” and
capital “A” through “Z”, with 39 samples (images) of each
class. Figure 5 shows some sample images of this data set. In
the simulations, each image was mapped as a vertex into an
underlying a network.

The parameter optimization was done as follows. For the k-
NN network formation technique, parameter k was optimized

1http://www.cs.nyu.edu/~roweis/data.html



Fig. 5: Image samples from the Binary Alphadigits data set1.

in the interval from 1 to the number of instances of the
largest class in the training data set. For the ε-radius network
formation method, parameter ε was optimized in the inter-
val {5%, 10%, . . . , 100%}, concerning the average distance
among instances in the training data set. The KAOG method
is non-parametric. Each experiment was performed by using a
10-fold stratified cross-validation process [16]. In this process,
the data set is split in 10 disjoint sets and, in each run, 9 sets
are used as training data and 1 set is used as the test data,
resulting in a total of 10 runs. The results are averaged over
10 runs, totaling 10× 10 = 100 runs.

Initially, we performed a preliminary experiment using only
the images of numbers. The goal was to evaluate the potential
of our technique in comparison to another algorithms. Figure
6 shows the results. It can be seen that the KAOG embedding
dimensionality reduction technique outperformed both k-NN
and ε-radius techniques. Also, the KAOG technique is bet-
ter comparing to the classification using the original image
features. For example, when using the first 150 transformed
image features, out of 320, the KAOG technique achieved
an accuracy around of 80%, against 75%, 74% and 43%
when using the original features, the ε-radius and the k-NN
respectively. These preliminary results show that the proposed
technique is promising.

In the next experiment, the techniques were analyzed on
all images (numbers + letters) from Binary Alphadigits data
set, resulting in a data set size of 1014 images. Despite
the higher complexity of the data set, the KAOG technique
was able to perform well, according to Figure 7. Again, one
can see that the KAOG embedding dimensionality reduction
technique outperformed the other techniques, including the
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Fig. 6: Classification accuracy on images of numbers from
Binary Alphadigits data set in function of the number of
transformed attributes used in classification.
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Fig. 7: Classification accuracy on all images available into
Binary Alphadigits data set in function of the number of
transformed attributes used in classification. By using the
KAOG network formation, the accuracy increased when using
just a small number of transformed features.

classification using the original image features. For example,
when using the first 100 transformed image features, out of
320, the KAOG technique achieved an accuracy around of
54%, against 33%, 33% and 17% when using the original
features, the ε-radius and the k-NN respectively. These results
have showed our technique based on KAOG network can be
applied to dimensionality reduction problem with good results
in the considered data sets.



V. CONCLUSION

We have studied the usage of a modified version of the
recently proposed k-Associated Optimal Graph (KAOG) to
perform supervised dimensionality reduction on image data
sets. The proposed technique results in two adjacency matrices
which represent the information of input data about both intra-
class and inter-class connections. Both matrices are used into
a graph embedding framework which is optimized in terms
of a projection vector. Experimental studies have showed that
the proposed technique achieves competitive results compared
to some other classical network formation methods. It has
been shown that our technique enhance image processing
by reducing the feature dimension and also increased the
classification accuracy.
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