
Natural Computing Journal manuscript No.
(will be inserted by the editor)

Synchronous Cellular Automata-Based Scheduler
initialized by Heuristic and modeled by a
Pseudo-linear neighborhood

Murillo G. Carneiro · Gina M. B.
Oliveira

the date of receipt and acceptance should be inserted later

Abstract Cellular Automata (CA) are able to produce a global behavior from
local interactions between their units. They have been applied to the task
scheduling problem in multiprocessor systems in a very distinguished way. As
this problem is NP-Complete, heuristics and meta-heuristics are usually em-
ployed. However, these techniques must always start the scheduling process
from scratch for each new parallel application given as input. On the other
hand, the main advantage to use CA for scheduling is the discovery of rules
while solving one application and their subsequent reuse in other instances. Re-
cently studies related to CA-based scheduling have shown relevant approaches
as the use of synchronous updating in CA evolution and good results in mul-
tiprocessor systems with two processors. However, some aspects, such as the
low performance of CA-based schedulers in architectures with more than two
processors and during the reuse of the discovered rules, need to be investi-
gated. This paper presents two new models to improve CA-based scheduling
to deal with such aspects. The first proposal refers to the employment of a
construction heuristic to initialize CA evolution and the second one is a new
neighborhood model able to capture the dependence and relations strength
among the tasks in a very simple way. It was named pseudo-linear neighbor-
hood. An extensive experimental evaluation was performed using graphs of
parallel programs found in the literature and new ones randomly generated.
Experimental analysis showed the combined application of both techniques
makes the search for CA transition rules during learning stage more robust

M. G. Carneiro
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo
Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, Brasil
E-mail: carneiro@icmc.usp.br

G. M. B. Oliveira
Faculdade de Computaccão, Universidade Federal de Uberlândia
Avenida João Naves de Ávila, 2.121, 38400-902, Uberlândia, Brasil
E-mail: gina@facom.ufu.br



2 Murillo G. Carneiro, Gina M. B. Oliveira

and leads to a significant gain when considering the reuse of them on real-world
conditions.

1 Introduction

Cellular automata are dynamical systems in which time, space and variables
are discrete, turning them adequate to be applied as models in different com-
putational challenges [4]. Wolfram’s works about CA dynamics [18,19,21,22]
revealed that even the simplest CA models can represent interesting patterns
and exhibit emergent behaviors. Therefore, they have been studied in a grow-
ing range of problems and applied to tasks related to pattern recognition [13],
criptography [23], scheduling [14,15,2,10,1,3], complex systems and artificial
life simulation [20,13,6].

A cellular automaton is composed of a d-dimensional arrangement of sim-
ple local units - or cells - and a state transition function also called transi-
tion rule. CA are able to produce a global behavior from local interactions
between their units and exploit highly parallel architectures such as FPGA
(Field-Programmable Gate Arrays) [17]. Based on these features, this paper
investigates an interesting CA-based approach related to its application to
task scheduling [2], which plays a central role in multiprocessor architectures.
A promising skill of such an approach is the CA ability to extract knowledge
from the process when scheduling an instance of parallel program and reuse
it to schedule other instances. On the other hand, traditional heuristics and
meta-heuristic approaches to this problem require high computational effort
to solve each new instance of the problem. Therefore, the key motivation to
study CA-based scheduling is the possibility to discover transition rules pre-
senting generalization ability, so that they can be used to schedule different
instances without the need of a new scheduling process from scratch.

Starting from a previous model [14] successively refined in [15,16,2,1,3],
new investigations are discussed here to improve the CA-based scheduling
performance. Previous CA-based scheduler models have a learning phase in
which a genetic algorithm is applied to search for CA transition rules able to
schedule a specific program graph. The major goal is to find CA rules adequate
not only to schedule the program graph used as target but also to be applied
to other unseen program graphs.

The first investigation here refers to the employment of a construction
heuristic to initialize the CA evolution. A preliminary analysis was presented in
[3], where results for architectures with two processors were discussed. Schedul-
ing results were highly improved in comparison to those of previous approaches
[15]. This model was named SCAS-H: Synchronous Cellular Automata-Based
Scheduler initialized by Heuristic. However, later results, specially considering
multiprocessor systems with more than two processors, have shown that al-
though the usage of construction heuristics indeed improves makespan in the
learning phase of the CA-based scheduler, the improvement was not so em-
phatic in the reuse phase, when the learned rules are applied to new instances



CA-based scheduler modeled by a pseudo-linear neighborhood 3

of program graphs. Subsequent analysis led us to conclude that this limitation
to manipulate more than two processors is partially related to the simple linear
neighborhood model employed in previous models, whose neighbor relations
are defined based only on the order number of tasks. This observation moti-
vated the second investigation reported here: a new model able to capture the
spatial relations of the computational tasks in a very simple way. It was named
here pseudo-linear neighborhood, since it preserves the simple structure of lin-
ear neighborhoods, but the neighbors relations are defined by the proximity
and relative importance of the tasks within the program graph. Finally, exper-
iments showed the combined application of both techniques - initialization by
construction heuristics and pseudo-linear neighborhood - makes the search for
CA transition rules during learning more robust, leading to a significant gain
when considering the reuse of them on real-world conditions. We called the
resultant scheduler model SCAS-HP: Synchronous Cellular Automata-Based
Scheduler initialized by Heuristic and modeled by a pseudo-linear neighbor-
hood.

The remainder of the paper is organized as follows: Sect. 2 defines the
general concepts and related works about CA for scheduling; Sect. 3 presents
the proposed CA-based scheduler models related to initialization heuristic and
pseudo-linear neighborhood; Sect. 4 provides computer simulation results to
analyze SCAS-H and SCAS-HP models. Moreover, this section shows the new
techniques can really improve the CA-based scheduling on real world condi-
tions; Finally, Sect. 5 concludes the paper.

2 Models based on CA for task scheduling

This section offers a general background of the use of CA-based models for
task scheduling. It is organized as follows:

– Cellular automata, which plays the key role in CA-based scheduling is
described in Subsect. 2.1.

– Task scheduling, which is a NP-Complete problem and a formulation about
its can be seen in Subsect. 2.2.

– The most important elements in CA-based scheduling and the state of the
art related to previous approaches are presented in Subsect. 2.3.

2.1 Cellular Automata

Basically, a cellular automaton consists of the cellular space and the transition
rule. Cellular space is a regular lattice of η cells, each one with an identical
pattern of local connections to other cells, and subjected to some boundary
conditions. These cells are arranged in a d-dimensional space and the most
studied are the one-dimensional and the two-dimensional arrangements. Each
cell assumes a state from a finite set of κ possible states in each time step. The
transition rule establishes how the states will change through time based on



4 Murillo G. Carneiro, Gina M. B. Oliveira

the current state of each cell and its immediate neighbors. For one-dimensional
CA, the neighborhood size µ is usually written as µ = 2R+ 1, where R is the
radius. The state αi of the ith cell of the lattice at time τ + 1 is denoted by:

ατ+1
i = ∆[ατi−R, . . . , α

τ
i , . . . , α

τ
i+R] (1)

where ∆ is a transition rule. Note that the state of ατ+1
i depends only on the

states of itself and its neighbors at time τ .
In a binary CA (i.e., two-state), the transition rule ∆ is given by a rule

table, which lists each possible neighborhood with its output bit, i.e. the up-
dating value of the center cell of the neighborhood. Cells updating usually
happens in the following ways: (i) parallel or synchronous, in which all cells of
the lattice update their states synchronously at each time step; (ii) sequential
or asynchronous, in which only one cell updates its state and this new state
is considered in the update of other cells being that the order in which each
cell is updated is from the left to the right [5]. Note that when synchronous
updating is used, the new states of cells αi and αi+1 can be calculated at
the same time step, whereas when asynchronous updating is used, αi must be
calculated in a time step and its new state is employed to update αi+1 in the
next time step.

2.2 Task Scheduling

Scheduling is an essential task for industries and organizations and also an
important subject of many research areas in engineering and computing. In
a broad sense, scheduling is a decision-making process that involves resources
and tasks to optimize an objective, typically the resultant runtime or makespan
[11]. Some applications for scheduling comprehend production scheduling, em-
ployees scheduling and computational tasks scheduling.

Considering the multiprocessors scheduling context, the objective is to al-
locate a set of computational tasks that compose a parallel application into
architecture nodes. In the problem investigated here, all information about the
tasks is known a priori and is named Static Task Scheduling [8]. An optimal
solution to an instance of the problem is such that the precedence constraints
among tasks are satisfied and the makespan is minimized. According to [7],
task scheduling is a NP-Complete problem, even limited to the simplest case:
a parallel system with only two processors.

The key concepts adopted here for the representation of the task scheduling
problem are described below:

– A parallel application is represented by a directed acyclic graph (DAG)
called program graph. Fig. 1 shows an example of a program graph called
gauss18, which represents a set of 18 tasks.

– Computational tasks are represented by nodes (V ).
– Precedence constraints between tasks are denoted by edges (E).
– For each node vi, a cost wi relative to its runtime is associated.



CA-based scheduler modeled by a pseudo-linear neighborhood 5

Fig. 1 Example of a program graph with 18 tasks (gauss18 ).

– For each edge ei,j , a communication cost ci,j relative to the cost of data
transfer from task i to j when running on different processors is associated.

– A task can not be executed unless all its predecessors have completed their
executions and all relevant data are available.

– Tasks without predecessors are called starting tasks and tasks without
successors are called exit tasks.

– A scheduling policy defines the running order of tasks in each proces-
sor. Note that while the scheduler distributes tasks among processors, the
scheduling policy orders these tasks within each processor.

Here, the scheduling policy used for all tests was the task with the highest
dynamic blevel first. The blevel (bottom level) of a task in a program graph is
the highest cost between this task and an exit task of graph, thus the blevel
of a task i can be calculated by:

bli =
{
wi, if i is an exit task;
max j∈successors(i)(blj + ci,j) + wi, otherwise. (2)

where blj denotes the blevel of each successor of i. Blevel of tasks without
successors is equal to their respective computational cost (w). For another
tasks, blevel is obtained recursively from exit tasks.

The blevel of a task is dynamic when it is calculated considering the al-
location of the tasks in processors, and the communication cost is considered
only when tasks are distributed in different processors [2].



6 Murillo G. Carneiro, Gina M. B. Oliveira

2.3 CA-based scheduler: concepts and related works

Previous CA-based scheduler models assume that each cell of the lattice is
associated with a computational task of the target program graph [14]. There-
fore, if a set of tasks has cardinality x, CA lattice has η = x cells. Furthermore,
given an architecture consisting of p processors, CA will have κ = p possible
states. Assuming a system with two processors (P0 and P1), each cell can take
value 0, indicating that the corresponding task is allocated on processor P0,
or value 1 (the task is allocated on P1). Fig. 2 shows an example of a prob-
lem modeling using the CA approach proposed in [14] and used in subsequent
works [15,16,2,1,3]. First, we have a program graph (with four tasks) and a
multiprocessor system (with two processors). Based on this information, η = 4
and κ = 2. The algorithm makes an initial allocation and represents it as the
initial configuration of CA lattice. Starting from this initial lattice, a transi-
tion rule ∆ is applied by τ time steps. The final lattice is then associated with
the final allocation of the tasks in the processors. Finally, a scheduling policy
is applied to the final allocation and the makespan is obtained.

Fig. 2 General scheme of CA-based scheduling.

Fig. 2 shows that the transition rule∆ plays a key role in CA-based schedul-
ing. It is necessary to find transition rules with computational ability for solv-
ing task scheduling. A genetic algorithm (GA) was employed in [14] to discover
CA rules. Most subsequent works also used a simple genetic algorithm to dis-
cover rules able to schedule a specific target graph. These CA-based models
operate in two stages: learning and reuse.

In the learning phase, a GA or another evolutionary algorithm is used to
search for rules able to evolve the lattice to optimal (or sub-optimal) alloca-
tions of a given program graph, starting from some initial configurations. In
[14], the GA population (gaP ) is initially formed by CA transition rules ran-
domly generated (individuals). The fitness function is calculated in each GA
generation by: (i) a set of initial lattices Γ representing allocations of tasks
in processors is generated; (ii) temporal evolution of each lattice Γ by each
transition rule ∆ in gaP for τ time steps; (iii) allocations obtained in time τ



CA-based scheduler modeled by a pseudo-linear neighborhood 7

are ordered in each processor using a scheduling policy obtaining makespan
associated to each pair (∆,Γ ); (iv) rule fitness is given by the average of
makespan calculated starting from each lattice of Γ . The best rule shows the
smallest makespan average. After computing the fitness, genetic operators as
selection, crossover and mutation are applied to the population generating
new transition rules. At the end of each generation, a re-insertion criterion
defines which individuals remain for the next generation. Subsequent works
employed different evolutionary algorithms to the learning phase as simple
genetic algorithms [15,2,1,3], coevolutionary genetic algorithms [14,10] and
joint evolution genetic algorithms [16].

CA rules stored after the learning phase are expected to be able to make
a good scheduling for other program graphs. This stage is named reuse phase;
the rules learned for a specific program graph are applied to new instances of
program graphs. However, recent works have pointed that rules obtained in
the learning phase do not have the generalization ability to be applied to other
instances as expected [3]. These works focus on obtaining a better capacity to
apply rules learned to other program graphs.

As highlighted in Fig. 2, some variations in the major steps of CA-based
scheduling have been largely investigated in the literature:

1. Lattice initializations - there are different ways to establish the initial con-
figuration of the lattice, which corresponds to the initial allocation of the
tasks over the nodes of the multiprocessor architecture. They can be ob-
tained randomly [14,15,16,2], through fixed and very easy strategies [1] or
considering the scheduling performed by a very simple heuristic [3], as the
initialization strategy investigated here.

2. Updating mode of CA cells - different approaches were also investigated,
being that sequential, sequential-randomly and parallel have been used.
Although in the first published models [14,15,16] the sequential updating
returned the best results, parallel updating is desirable [14] since the inherit
parallelism of CA implementations can only be exploited in this updating
mode. Recent investigations have focused on synchronous models [2,1,3].

3. Neighborhood models - these models are responsible for capturing the re-
lations between tasks expressed in the program graph. Previous neigh-
borhood models are linear and non-linear. The advantage of linear neigh-
borhood is that it is simple and easy to adapt to an arbitrary number
of processors [15]. However, it does not capture the actual relations be-
tween tasks because it is based only on the order number of the tasks (the
neighborhood of a cell αi is chosen by the position in the lattice, not by
the relations between tasks). On the other hand, non-linear neighborhoods
can express very complex relations between tasks, such as precedence con-
straints or dependences of the same task (two tasks that are preceded by a
same task). The nonlinear models previously investigated in the literature
were: selected and totalistic [14,16,10]. However, they are computation-
ally intensive and difficult to adapt to architectures using more than two
processors. In this paper, we propose a new neighborhood model, named



8 Murillo G. Carneiro, Gina M. B. Oliveira

here pseudo-linear, which keeps the same simplicity of linear model, but
expresses more information about the dependences in the program graph.

3 New approaches to CA-based scheduling

There are many important elements in the CA-based scheduling. In this pa-
per, we explore two innovative approaches. The first algorithm is called Syn-
chronous Cellular Automata-based Scheduler with initialization Heuristic (SCAS-
H). It was preliminarily presented in [3]. Now, we show a general description
of it and a more extensive experimental analysis. The second approach is a
new neighborhood model called pseudo-linear, able to capture the proximity
and relations strength among tasks in a program graph.

This section is organized as follows: Subsect. 3.1 introduces an analysis of
previous models (CAS and SCAS); Subsect. 3.2 describes SCAS-H technique;
and Subsect. 3.3 presents the new neighborhood framework.

3.1 CAS and SCAS: analysis of previous models

[14] presents a CA-based scheduler that operates in two modes: learning and
operation. In the learning mode, a genetic algorithm (GA) is used to search for
rules able to evolve the lattice to optimal (or sub-optimal) allocations of a given
program graph. CA evolution starts from random initial configurations. In the
operation mode is expected that, for any initial allocation of tasks, the CA rules
stored after learning phase are able to evolve the lattice until a configuration
which represents an optimal allocation, minimizing the makespan. The rules
obtained in the learning phase are also expected to be used in the scheduling of
other graphs (reuse phase). The neighborhood model employed in [15] is linear
and both updating modes of cells - sequential and parallel - were investigated.
Moreover, the results obtained with the sequential updating were much better
than using parallel. We named this model CAS (CA-based scheduler).

In the first CA-based scheduler models the synchronous updating mode of
cells was discarded because it returned the worst results [15]. On the other
hand, the large capacity of parallelism inherent to CA is lost if the asyn-
chronous updating of cells is adopted [14,2]. A CA-based scheduler model
using synchronous updating of cells was introduced in [2]. This model, named
SCAS (Synchronous Cellular Automata-based Scheduler), also employs linear
neighborhood, but unlike [15], the strategy in GA is not elitist. In addition,
the boundary condition used in the CA lattice is different from the null con-
dition employed in [15]: cells to the right of the last cell are considered in
state 1. The results using SCAS showed its good performance in comparison
to CAS: its results overcame CAS model with synchronous updating and they
are compatible with CAS model using sequential updating [2].

SCAS was used as the basis of the new models investigated in the present
work. That is, all of them employ synchronous updating and non-elitist strat-
egy in the genetic algorithm used in the learning phase.



CA-based scheduler modeled by a pseudo-linear neighborhood 9

One of the major motivations to build new CA-based scheduler models is
the great difficulty observed in some related works when the number of pro-
cessors increases [15], while investigations performed in other works consider
only multiprocessor system with κ = 2 processors [14,16,2,10,3]. An attempt
to increase the number of processors was presented in [15], showing CAS model
was not able to deal with the complexity due to the increment in the number of
processors. Another motivation to build new CA-based scheduler models was
the undesirable results provided by the reuse of the rules found for a given
program graph to other unseen instances.

We implemented the CAS model with sequential updating as described
in [15] and the previous SCAS model as described in [2] to evaluate the
reuse of rules evolved for gauss18 in the learning phase to solve different
program graphs. We also implemented a scheduling algorithm based on the
meta-heuristics simulated annealing, named here SA, to evaluate the qual-
ity of solutions given by the reuse of gauss18 -learned rules. The results of
reusing gauss18 rules (evolved previously using CAS and SCAS models) are
not reasonable when compared with the reference values given by SA. We also
evaluated the previous models CAS and SCAS when using more than κ = 2
processors in the learning phase and compared their results with those ob-
tained by SA. Both models (CAS and SCAS) presented limitations when the
number of processors has increased. Sect. 4 shows and discusses the results of
these experiments in detail.

We believe that an important cause to this undesirable performance is
related to the process used to initialize CA lattices to start scheduling in CAS
and SCAS models. The way how the initial configuration of the CA lattice is
defined reflects the type of transition rule ability the GA is searching for. In
previous studies [14,15,16,2,10], the scheduler model focused on the capacity
of a transition rule to evolve any random initial lattice to a configuration that
represents the optimal allocation of tasks. During the learning phase, each rule
is evaluated according to its performance in scheduling a set of initial lattices
Γ . Besides, in the operation phase, the quality of any learned rule is measured
using it to schedule a new set of random lattices.

However, the search for this independence to the initial lattice makes the
rules search complex and computationally intensive, embarrassing GA conver-
gence. The capacity of a rule to schedule other instances in the reuse phase is
a more relevant generalization ability than the capacity of a rule to perform
schedule starting from any initial lattice. Therefore, a new way to start the
scheduling from a specific initial condition generated by a simple heuristic is
investigated here. This modification leads to the first model evaluated in the
present work: SCAS-H.



10 Murillo G. Carneiro, Gina M. B. Oliveira

3.2 SCAS-H: Synchronous Cellular Automata-based Scheduler initialized by
Heuristic

The major modification of SCAS-H in comparison with the previous SCAS
model refers to the way the CA lattice is initialized to perform the schedule,
which reflects in the process of evaluation of the GA rule population. The main
steps in the CA evolution used in SCAS-H are (i) application of a deterministic
construction heuristic chosen a priori to obtain an initial allocation, which
defines the initial configuration of the lattice; (ii) temporal evolution of the
lattice using each rule transition ∆ in gaP for τ time steps; (iii) the final
lattice in time τ defines the final allocation of tasks which are ordered in each
processor using a scheduling policy obtaining makespan associated to each rule
∆; (iv) rule fitness is equal to makespan obtained using it. The best rule in gaP
shows the smallest makespan. In fact, step (i) is performed only once during
GA run, because the allocation performed by the deterministic construction
heuristic is unique and is used in all evaluations.

Heuristic methods have been common in the literature to approximately
solve task scheduling in a reasonable time [8]. These methods build a single
response to a given input in each step of scheduling and they are known as con-
struction heuristics. They are characterized by low computational complexity
and utilization of attributes calculated directly from the program graph to
perform the scheduling. HLFET (Highest Level First with Estimated Time)
[8], a widely known construction heuristic, was slightly modified to generate
the initial configuration of the lattice. We built a deterministic heuristic called
DHLFET, which it is HLFET without its random choices. Therefore, in case of
two tasks with same sl, the task with the smallest order number is chosen. Alg.
1 shows DHLFET steps. The static level attribute (sl) computes the largest
path from each task to an exit task without considering communication costs
in the program graph.

Algorithm 1 DHLFET Heuristic
1: Compute the sl (static level attribute) for each task
2: Make a ReadyList in a descending order of sl. First, ReadyList includes only starting

tasks. Ties are broken by chose the task with smallest order number
3: while all tasks are not scheduled do
4: Schedule the head task of ReadyList for the processor that permits the earliest exe-

cution using non-insertion approach
5: Update ReadyList including the new ready tasks
6: end while

SCAS-H works in two stages: learning and reuse. Algorithm 2 defines the
major steps of SCAS-H in the learning mode, where gaG is the number of
generations (and the stopping criterion), gaP is the size of population, gaC
is the number of generated individuals in crossover given by gaPC (crossover
rate), gaM is the mutation rate, selection is given by a simple tournament gaT



CA-based scheduler modeled by a pseudo-linear neighborhood 11

and ICH is the initial configuration of the lattice obtained by the heuristic
(DHLFET).

Algorithm 2 SCAS-H Learning Mode
1: Generate a random population of gaP rules
2: Generate initial configuration of lattice with DHLFET (ICH)
3: Compute the fitness of the gaP rules
4: while (!finish) do
5: Selecting pairs of rules in gaP using simple tournament (gaT = 2) to generate gaC

rules
6: Applying the single-point crossover in pairs selected
7: Submit gaC rules to mutation gaM

8: Compute the fitness of the gaC rules
9: Sorting gaP +gaC based on fitness and choose the gaP best rules for next generation

10: end while
11: gaP is stored in rules database

In reuse mode, the CA is equipped with a set of learned rules and SCAS-H
receives a new program graph to schedule. The same heuristic used in the
learning mode is used in the reuse mode to make the initial allocation associ-
ated to the new graph. Then, CA steps are executed for each rule ∆, returning
the scheduling with the smallest makespan.

Results of experiments comparing SCAS-H with the previous models CAS
[15] and SCAS [2] are provided in Subsect. 4.1. They show the improvement
obtained with the introduction of the new strategy to initialize the CA lattice
using a construction heuristic with significant impact on the learning phase
when using more than two processors. However, subsequent experiments show
that this improvement was not so emphatic in the reuse phase, where scheduler
performance decays when architectures with κ = 3 or κ = 4 processors are
used.

It was possible to conclude that this limitation to manipulate more than
two processors in the reuse phase is partially related to the linear neighbor-
hood employed in previous models and in SCAS-H. Based on this observation,
a new neighborhood model was proposed and is named here pseudo-linear. It
preserves the simple structure of linear neighborhood, but the neighbors rela-
tions are defined by the proximity and relative importance of the tasks within
the program graph.

3.3 Pseudo-linear neighborhood for CA-based scheduling

Neighborhood is a crucial element to CA transition rules because it can ex-
press relations among tasks in program graph. In this context, two approaches
have been largely explored in related works: linear [15,2,1,3] and nonlinear
neighborhoods [14,16]. Linear neighborhood is very simple to implement be-
cause it uses only the order number of the tasks and a radius R to define the



12 Murillo G. Carneiro, Gina M. B. Oliveira

neighborhood. It can be easily adapted so that an arbitrary number of pro-
cessors can be used. However, it is not adequate to identify the relationships
among tasks in the program graph. On the other hand, two nonlinear neighbor-
hoods have been investigated in the literature: selected [14,16] and totalistic
[14]. Although they can capture the relations among tasks from precedence
constraints and attributes of the program graph, they are very complex to
implement and limited to multiprocessor systems with only two processors.

In this context, a new neighborhood model named pseudo-linear is pro-
posed here. As the linear neighborhood, the new model uses radius R, but it
is able to capture relations among computational tasks in the program graph.
Furthermore, it can be adapted to multiprocessor systems with an arbitrary
number of processors. Pseudo-linear is a simple neighborhood based on two
important concepts. First, it considers only direct relationships between tasks
in the graph: precedence constraint. For example, vi can be a neighbor of vj if
and only if there is a precedence constraint ei,j or ej,i in the program graph.
This means that pseudo-linear considers only the predecessors or successors
of a given task to define its neighborhood. In addition, for each task and edge
in the graph is associated a cost, which is important to detect the strength
of the relationship among one task and its predecessors or successors. In this
investigation, pseudo-linear neighborhood employs two well-known attributes
in task scheduling: bottom level of a task (or blevel) and top level of a task
(or tlevel) [8]. Note that pseudo-linear neighborhood is a framework and other
attributes can be considered.

A more detailed explanation about the pseudo-linear neighborhood is given
as follows. Through a radius R, we can determine the next state of cell σi
according to (3):

στ+1
i = ∆[στblevel(R), . . . , σ

τ
blevel(1), σ

τ
i , σ

τ
tlevel(1), . . . , σ

τ
tlevel(R)] (3)

where function blevel(.) returns the task associated with cell σi by a prece-
dence relation (successor or predecessor). Initially, the set of successors and
predecessors of task σi are identified in a list of related tasks. Thus, the list of
tasks is ordered by blevel attribute in a descending order and function blevel(x)
returns the xth task in this ordered list. A similar procedure is performed for
function tlevel(x), which returns the xth related task considering the tlevel
descending order. For each attribute (blevel and tlevel), using a neighborhood
with radius R, only the first R tasks in each list are used as neighbors. Note
that when two or more tasks have the same value for some attribute, (i) blevel
list orders these tasks according to the highest order number, whereas (ii)
tlevel list orders these tasks according to the lowest alap (As Late As Possible
start time attribute [8]). If two or more tasks have the same alap, tlevel list
orders these tasks according to the lowest order number. Furthermore, there
is only one special case in pseudo-linear neighborhood: when the number of
neighbors is smaller than R. In this case, the lists come back to head task and
continue until they complete R neighbors tasks.

Fig. 3 illustrates pseudo-linear neighborhood. Fig. 3(a) shows the direct
neighbors of task 11 in gauss18 program graph (Fig. 1). Figs. 3(b) and 3(c)



CA-based scheduler modeled by a pseudo-linear neighborhood 13

display, respectively, the resultant neighborhood using linear and pseudo-linear
neighborhood for this task. Note that linear neighborhood considers only the
position of the tasks in the lattice, which explains why tasks 9, 10, 12 and
13 are considered neighbors of task 11 (for R = 2). Therefore, for every pro-
gram graph, such as rand30, rand40 and rand50, the neighbors of task 11 are
the same, regardless of the relationship among the tasks. On the other hand,
pseudo-linear considers tasks 8, 6, 15 and 13 neighbors of 11 because it is able
to capture proximity and strength of the relations among tasks in a program
graph.

Fig. 3 Examples of neighborhoods of task 11 in gauss18 : (a) precedence constraints related
to task 11; (b) linear neighborhood for task 11; (c) pseudo-linear neighborhood for task 11.

The new model implemented using pseudo-linear neighborhood was named
SCAS-HP. It basically uses similar steps of SCAS-H, except by the neighbor-
hood model adopted for the transition rules. Thus, the major modification is
related to step 3 of Alg. 2 because the pseudo-linear neighborhood is adopted
instead of the linear one during the CA evolution. Furthermore, SCAS-HP
continues working in two stages (learning and reuse) and Alg. 2 can be also
used to define the major steps of SCAS-HP in the learning mode.

Comparative experiments using SCAS-H and SCAS-HP are reported in
Section 4.2. They show that the adoption of the new neighborhood model
increases the generalization ability of the rules in the reuse phase for architec-
tures with more than two processors.



14 Murillo G. Carneiro, Gina M. B. Oliveira

4 Experimental results and discussion

This section presents and discusses some results of computer simulations car-
ried out in order to extensively evaluate SCAS-H and SCAS-HP models.
Specifically, Subsects. 4.1 and 4.2 provide detailed simulations in the learn-
ing phase and supply the performance of the proposed framework in the reuse
phase under real-world conditions, respectively, for SCAS-H and SCAS-HP. A
general explanation about the experiments is given below.

– Program graphs
In all simulations we used the most difficult program graph found in the
literature, gauss18. We also adopted a modified version of DAG genera-
tion [9] to obtain randomly program graphs rand30, rand40 and rand50
with a high nonlinearity similar to gauss18. These program graphs have,
respectively, 30, 40 and 50 tasks.

– Algorithms and parameters
Other techniques, such as CAS [15], SCAS [2] and Simulated Annealing
[12] were applied to these program graphs and the results were compared
with those of proposed models.
The parameters of the evolutionary algorithm in all CA-based schedulers
were size of population gaP = 200, simple tournament gaT = 2 , crossover
rate gaPC = 100% , mutation rate gaM = 3% and number of generations
gaG = 200.
After some empirical tests, SA parameters were given by:

satemp = 100 ∗ 0.9995satime (4)

where satemp represents the temperature mapping in function of time
satime. Other parameters were ε = 1 ∗ 10−9 and lateral moves samoves =
η/6.

– Analysis of results
Twenty runs were performed for each experiment. Statistical analysis was
employed to evaluate the techniques. When the samples follow a normal
distribution, t-test is used, otherwise we applied Mann-Whitney test. For
the hypothesis test, we adopted a significance level of 5%, which corre-
sponds to a confidence level of 95%. Analysis involving best makespan
(“Mk”), averages and standard deviation were also conducted.

4.1 SCAS-H experimental analysis

This subsection reports on a comparative study about the performance of
SCAS-H, previous models of CA-based scheduler and SA in multiprocessor
systems with a different number of processors. We divided the analysis into
two topics: experimental results in learning phase and reuse phase.



CA-based scheduler modeled by a pseudo-linear neighborhood 15

4.1.1 Learning phase

Tab. 1 shows the results of the learning phase in CA-based approaches and SA
for κ = 2, κ = 3 and κ = 4 number of processors. Column “Mk” represents the
best makespan value in all executions. Note that in this column, the results of
the reproduction of CAS for sequential updating of cells (CAS) [15] and SCAS
[2] (which uses synchronous updating of cells) do not ensure an exact makespan
value because these algorithms use a Γ set of random initial configurations to
drive the learning and reuse phases. So, the makespan value of a transition rule
∆ is an average of the results obtained by ∆ on the Γ set [3]. On the other
hand, SCAS-H does not display this characteristic because it always starts
from the same initial configuration obtained by the construction heuristic.
Column “H” denotes the results of the statistical tests when comparing SCAS-
H with other algorithms. In other words, “<” represents that SCAS-H obtain
better results than the considered algorithm, “>” represents the opposite, and
“=” states that there is not statistical evidence about the better algorithm
(null hypothesis).

Table 1 Comparison among SCAS-H learning phase and CAS, SCAS and SA techniques
in multiprocessor systems with two (κ = 2), three (κ = 3) and four processors (κ = 4).

Learning phase - CA parameters:
κ = 2 (R = 3), κ = {3, 4} (R = 1), τ = 50

SCAS-H CAS SCAS SA
PG κ Mk Mk H Mk H Mk H

2 44 44 < 44 < 44 <
gauss18 3 44 52 < 52 < 44 <

4 44 51.7 < 50.8 < 44 <
2 1222 1239 < 1225.84 < 1222 <

rand30 3 853 963 < 1012.86 < 970 <
4 828 902.72 < 976.4 < 853 <
2 983 1006 < 996.52 < 997 <

rand40 3 694 806.94 < 796.6 < 794 <
4 607 681 < 725.4 < 684 <
2 628 659.04 < 661.04 < 664 <

rand50 3 532 640.96 < 655.12 < 624 <
4 524 620 < 642.64 < 600 <

Discussion for κ = 2 results: For κ = 2, SCAS-H shows the best results
in comparison with previous CA-based approaches in the learning stage. Sta-
tistical tests prove this. Although average and standard deviation results are
not shown in Tab. 1 for clarity, it was possible to observe that standard devi-
ation in SCAS-H results is much smaller when compared to other techniques.
This shows learning phase in SCAS-H is very robust in κ = 2 multiprocessor
systems.

Discussion for κ = 3 results: There are significance statistical evidence
that SCAS-H results were better than those obtained by other techniques. Note
that for κ = 3, the difference among SCAS-H results and other algorithms is



16 Murillo G. Carneiro, Gina M. B. Oliveira

greater than considering κ = 2. Moreover, for this number of processors, pre-
vious CA-based approaches showed worse results in gauss18 program graph.
Both approaches and SA also found the worst results on randomly generated
program graphs. On the other hand, SCAS-H was able to extract rules that
provides good scheduling to the program graphs.

Discussion for κ = 4 results: As in the experiments discussed above
(κ = 2 and κ = 3), previous CA-based approaches showed the worst results to
schedule gauss18 and random program graphs. SA found worse results than
SCAS-H in random program graphs. Once again, SCAS-H presented the best
performance according to statistical tests.

4.1.2 Reuse phase

Tab. 2 shows the best makespan after applying the extracted rules learned
for gauss18 program graph for κ = 2 processors on distinct program graphs:
rand30, rand40 and rand50. Comparisons among SCAS-H performance and
other CA-based algorithms showed the best results were obtained by SCAS-
H (one can clearly see a great difference). Comparing SCAS-H with SA, the
results are close. However, it is important notice that SA executes all steps
of its search for each instance whereas SCAS-H uses only the learned rules
extracted from another program graph. As a general conclusion, we could
notice that there was space to extract better performance from learned CA-
rules. So, we started to investigate new models of neighborhood to better
represent the relationship between tasks.

Table 2 Learned gauss18 transition rules of CAS, SCAS and SCAS-H applied to the reuse
phase considering multiprocessor systems with κ = 2.

gauss18 Reuse phase
Alg. rand30 rand40 rand50

SCAS-H 1233 1000 656
CAS 1336.61 1136.55 730.7
SCAS 1743.25 1268.29 837.22
SA 1222 997 664

4.2 Pseudo-linear neighborhood experimental analysis

Many CA-based approaches have used either linear neighborhood [15,2,1,3] or
nonlinear neighborhood [14,16,10]. However, these two approaches have their
limitations: the former uses only the position in the lattice to determine the
neighborhood of a task whereas the latter is complex and can be applied only to
multiprocessor systems with two processors. To deal with these drawbacks, we



CA-based scheduler modeled by a pseudo-linear neighborhood 17

propose SCAS-HP, a CA-based scheduling that uses the pseudo-linear neigh-
borhood. This new neighborhood model offers CA a simple structure to cap-
ture the dependence and relationship strength among tasks in the program
graph and can be applied with an arbitrary number of processors.

This subsection describes experiments performed considering the environ-
ment with the new neighborhood model. Subsect. 4.2.1 provides results of
SCAS-HP in the learning phase compared with those obtained by the pow-
erful CA-based scheduler showed previously, SCAS-H. Subsect. 4.2.2 shows
the reuse phase analysis for these algorithms. In addition, SCAS-HP also is
compared with SA in these subsections.

4.2.1 Learning phase

Tab. 3 provides a detailed analysis of the results of SCAS-HP, SCAS-H and
SA considering multiprocessor systems with κ = 2, κ = 3 and κ = 4. Note that
statistical tests show a comparison among SCAS-HP and other approaches.
For instance, column “H” in line “SCAS-H” represents the results of the statis-
tical tests between SCAS-HP and SCAS-H (“<” indicates there is significance
statistical evidence than SCAS-HP presents better performance; “>”indicates
SCAS-H has better results; “=” indicates there is not statistical evidence than
a algorithm is better than other).

Table 3 Comparison among SCAS-HP learning phase and SCAS-H and SA techniques in
multiprocessor systems with two (κ = 2), three (κ = 3) and four processors (κ = 4).

Learning phase - CA parameters:
κ = 2 (R = 3), κ = {3, 4} (R = 1), τ = η ∗ 3

SCAS-HP SCAS-H SA
PG κ Mk Mk H Mk H

2 44 44 = 44 <
gauss18 3 44 44 > 44 <

4 44 44 = 44 <
2 1222 1222 = 1222 <

rand30 3 836 851 < 970 <
4 755 822 < 853 <
2 983 983 = 997 <

rand40 3 684 695 < 794 <
4 564 613 < 684 <
2 624 628 < 664 <

rand50 3 544 528 > 624 <
4 504 540 < 600 <

Discussion for κ = 2 results: These results show the power of the learn-
ing stage in SCAS-H and SCAS-HP. Only considering rand50 program graph,
there is significance statistical evidence that SCAS-HP results are better than
those of SCAS-H. Comparison between SCAS-HP and SA shows a reasonable
difference between makespan values on random program graphs. Furthermore,



18 Murillo G. Carneiro, Gina M. B. Oliveira

there is statistical evidence that SCAS-HP results are better than SA on all
program graphs.

Discussion for κ = 3 results: Again, the results of SCAS-HP are better
than those found by SA according to stastistical tests. However, SCAS-H is
better than SCAS-HP on two program graphs (gauss18 and rand50 ), whereas
SCAS-HP is better on the other two program graphs (rand30 and rand40 ).

Discussion for κ = 4 results: An interesting result in this table is pro-
vided by SCAS-HP, which found the optimal makespan for gauss18 program
graph in all twenty runs. SCAS-H was near this result on gauss18. However,
in other program graphs, there is statistical evidence that SCAS-HP results
are better than those found by SCAS-H. Furthermore, there are great differ-
ences between the makespan and the averages obtained by these two models.
In addition, the table shows SA presented the worst results.

4.2.2 Reuse phase

Aiming to evaluate CA-based scheduling algorithms under real conditions, we
took the extracted rules in the learning phase of gauss18 program graph con-
sidering κ = 2, κ = 3 and κ = 4 number of processors. These rules are applied
to distinct program graphs considering the same κ value and the makespan is
obtained. For example, rules extracted from gauss18 learning phase consider-
ing κ = 3 processors are used to schedule rand30, rand40 and rand50 program
graph on κ = 3 processors.

Tab. 4 shows the reuse of rules extracted from gauss18 program graph for
SCAS-H and SCAS-HP. Note that in 8 out of 9 cases, the results of SCAS-
HP are better than those obtained by SCAS-H. When comparing SCAS-HP
with SA, the former yelded the best results in 6 out of 9 cases. Furthermore,
remember that SA needs to perform its search process again for each scheduling
whereas CA-based models only reuse the acquired knowldege.

Table 4 Learned gauss18 transition rules of SCAS-HP and SCAS-H applied to the reuse
phase considering multiprocessor systems with different numbers of processors (κ = 2, κ = 3
and κ = 4).

gauss18 Reuse phase
rand30 rand40 rand50

Alg. 2 3 4 2 3 4 2 3 4

SCAS-HP 1232 938 857 990 733 656 644 644 596
SCAS-H 1244 1122 959 1007 848 803 660 628 688

SA 1222 970 853 997 794 684 664 624 600

5 Conclusions

This paper presents two new approaches to CA-based scheduling: (i) employ-
ment of a construction heuristic to initialize CA lattice evolution, and (ii) a



CA-based scheduler modeled by a pseudo-linear neighborhood 19

new neighborhood model - named pseudo-linear - able to capture the depen-
dence and relations strength among the tasks of the program graphs in a very
simple way. The first approach leads to the first scheduler model investigated
here named SCAS-H and the second one enables to refine SCAS-H and to
propose the second scheduler model named SCAS-HP.

As construction heuristic, we proposed DHLFET. It is a slight modifi-
cation of the well-known HLFET heuristic [8], which is a very simple and
computationally efficient heuristic commonly used in scheduling task. For the
pseudo-linear neighborhood, we employed the bottom level (blevel) and top
level (tlevel) attributes, since these measures can do a good characterization
of the relations among tasks considering scheduling context. Several experi-
ments were conducted in the learning and reuse phases, so that we could better
assess the performance of the proposed techniques. Parallel program graphs
found in the literature and others randomly generated were used in the ex-
periments. SCAS-H using DHLFET in the lattice initialization and SCAS-HP
using DHLFET and the pseudo-linear neighborhood were extensively eval-
uated in multiprocessor systems with two, three and four processors. Their
performances were compared with those of previous CA-based schedulers and
a simple scheduler based on Simulated Annealing meta-heuristic.

First experiments showed SCAS-H overcame previous CA-based models
proposed in [15] and [2] showing that the employment of a simple heuristic to
initialize the CA lattice evolution can be more efficient than the usage of a set
of random lattices to guide genetic search in the learning phase. This improve-
ment was highlighted when the number of processors on the multiprocessor
architecture was raised from 2 to 3 and 4 processors. Comparing SCAS-H with
a second scheduler based on simulated annealing (SA) it was possible to notice
SCAS-H were consistently better than SA no matter the number of processors
employed (2, 3 or 4) when considering the learning phase. That is, when both
models SCAS-H and SA employ a search taking the target graph in account,
the CA-based model returns a better performance. However, when we tried
to reuse SCAS-H rules previously evolved for a target graph to new program
graphs unseen during the evolutionary search, makespam values were worse
than the results obtained by SA. Although it must taken account that SA
needs to perform the search again for each program graph, while CA rules are
reused without search process, the main goal of CA-based schedulers is the
possibility to have good results in reuse phase. Therefore, we concluded we
have space to improve SCAS-H reusing results.

The second series of experiments showed that SCAS-HP is also consis-
tently better than SA scheduler during learning phase, as observed for SCAS-
H. Comparing the performance of both CA-based models investigated here
during learning phase, SCAS-HP returned results at least as good as SCAS-H,
with some significant improvement in some scenarios showing that the new
pseudo-linear neighborhood is good to express program graph relations. Con-
sidering 4 processors in the architecture, SCAS-HP improves SCAS-H with a
significant difference, as showed by statistical tests. Besides, in reuse phase, re-
sults obtained employing SCAS-HP rules evolved for gauss18 to other unseen



20 Murillo G. Carneiro, Gina M. B. Oliveira

program graphs showed a significant advantage over SCAS-H in 8 of 9 evalu-
ated scenarios (3 unseen graphs, with 2, 3 and 4 processors). Due to SCAS-HP
performance it seems that pseudo-linear neighborhood is better than the linear
model to capture task relations expressed in the program graph and CA rules
evolved using this new model have a better generalization ability, which is a
desirable characteristic in CA-based schedulers [10]. SA scheduler results are
more close to SCAS-HP reuse results; however, we must highlight that SA do
a new search for each graph and even this, SCAS-HP was better than SA in 6
of the 9 scenarios.

As a general conclusion, the performances of the proposed approaches are
better than those obtained by other CA-based algorithms as in the learning
stage as in the reuse phase. Finally, experimental analysis also drive us to
conclude that the combined employment of both techniques make the search
for CA transition rules during learning more robust and leads to a significant
gain when considering the reuse of them on real-world conditions.

As future work, SCAS-HP will be extended by the investigation of new
heuristics to initialize CA lattices. Other attributes, such as alap (As Late
As Possible), asap (As Soon As Possible) and cp (Critical Path), will also be
tested to define the pseudo-linear neighborhood. The inspection of the minor-
ity of scenarios in which SCAS-HP did not return a good result revealed that
the change performed in the initialization of lattices, where we use only one
configuration to learn the rules instead of a set of configurations, together with
the application of a more complex neighborhood can provoke some undesir-
able unstable behavior, as chaotic dynamics. We are working on an approach
to guide genetic search to avoid such unstable rules. Initial results are very
promising and they must be divulged next soon.

Acknowledgements

This work has been supported by the National Counsel of Technological and
Scientific Development - CNPq (process 134278/2010-0) - of the Brazilian
Government. Murillo Guimarães Carneiro thanks also to São Paulo Research
Foundation (FAPESP) and Gina Maira Barbosa de Oliveira is grateful to
Minas Gerais Research Foundation (FAPEMIG).

References

1. Carneiro, M.G., Oliveira, G.M.: SCAS-IS: Knowledge extraction and reuse in multi-
processor task scheduling based on cellular automata. In: Proceedings of Brazilian
Symposium on Neural Networks (SBRN), pp. 142–147 (2012)

2. Carneiro, M.G., Oliveira, G.M.B.: Cellular automata-based model with synchronous
updating for task static scheduling. In: Proceedings of 17th International Workshop on
Cellular Automata and Discrete Complex System, pp. 263–272 (2011)

3. Carneiro, M.G., Oliveira, G.M.B.: SCAS-H: Synchronous cellular automata-based sched-
uler with initialization heuristic to task scheduling. In: Proceedings of 18th International
Workshop on Cellular Automata and Discrete Complex System, pp. 1–10 (2012)



CA-based scheduler modeled by a pseudo-linear neighborhood 21

4. Dennunzio, A.: From one-dimensional to two-dimensional cellular automata. Fundam.
Inform. 115(1), 87–105 (2012)

5. Dennunzio, A., Formenti, E., Manzoni, L.: Computing issues of asynchronous CA. Fun-
dam. Inform. 120(2), 165–180 (2012)

6. Farina, F., Dennunzio, A.: A predator-prey cellular automaton with parasitic interac-
tions and environmental effects. Fundam. Inf. 83(4), 337–353 (2008)

7. Garey, M.R., Johnson, D.S.: Computers and Interactability. A Guide to the Theory of
NPCompleteness. Freemann And Company (1979)

8. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling
algorithms. J. of Parallel and Distributed Computing 59(3), 381–422 (1999)

9. DAG generation program: http://www.loria.fr/∼suter/dags.html (2011)
10. Oliveira, G.M., Vidica, P.M.: A coevolutionary approach to cellular automata-based task

scheduling. In: G.C. Sirakoulis, S. Bandini (eds.) Cellular Automata, Lecture Notes in
Computer Science, vol. 7495, pp. 111–120. Springer Berlin Heidelberg (2012)

11. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, third edn. Springer Science
(2008)

12. Russell, S., Norvig, P.: Artificial intelligence: a modern approach, third edn. Prentice
Hall series in artificial intelligence. Prentice Hall (2010)

13. Sarkar, P.: A brief history of cellular automata. ACM Comp. Surveys 32(1), 80–107
(2000)

14. Seredynski, F., Zomaya, A.Y.: Sequential and parallel cellular automata-based schedul-
ing algorithms. IEEE Trans. Parallel and Distributed Systems 13(10), 1009–1022 (2002)

15. Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor scheduling and rescheduling
with use of cellular automata and artificial immune system support. IEEE Trans. on
Parallel and Distributed Systems 17(3), 253–262 (2006)

16. Vidica, P.M., Oliveira, G.M.B.: Cellular automata-based scheduling: A new approach
to improve generalization ability of evolved rules. pp. 18–23 (2006)

17. Weinert, W.R., Benitez, C., Lopes, H.S., Lima, C.R.E.: Simulation of the dynamic
behavior of one-dimensional cellular automata using reconfigurable computing. In: Pro-
ceedings of the 3rd international conference on Reconfigurable computing: architectures,
tools and applications, ARC’07, pp. 385–390. Springer-Verlag, Berlin, Heidelberg (2007)

18. Wolfram, S.: Cellular automata. Los Alamos Science (1983)
19. Wolfram, S.: Universality and complexity in cellular automata. Physica D: Nonlinear

Phenomena 10, 1 – 35 (1984)
20. Wolfram, S.: Complex systems theory. In: Emerging Syntheses in Science: Proceedings of

theFounding Workshops of the Santa Fe Institute, pp. 183–189. Addison-Wesley (1988)
21. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley (1994)
22. Wolfram, S.: A new kind of science. Wolfram Media, Inc., Champaign, IL (2002)
23. Wolfran, S.: Cryptography with cellular automata. Advances in Cryptology: Crypto ’85

Proceedings 218, 429–432 (1986)


