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Abstract— In machine learning, dimensionality reduction
aims at reducing the dimension of the input data in order to
achieve a small set of features that keeps the most important
original relationships among data samples. In this paper, we
investigate the usage of a non-parametric network formation
algorithm into a graph embedding framework to perform super-
vised dimensionality reduction. Specifically, our technique maps
data into networks and constructs two network adjacency ma-
trices which convey information about intra-class components
and inter-class penalty connections. Both matrices are inserted
into an optimization framework in order to achieve a projection
vector that is used to project high-dimension data samples into
a low-dimensional space. One advantage of the technique is
that no parameter is required, that is, there is no need to select
a model for the input data. Computer simulations on real-
world data sets have been performed to compare the proposed
technique to some classical network formation methods such as
k-NN and ε-radius, and to well-known dimensionality reduction
algorithms such as PCA and LDA. Statistical tests have shown
that our approach outperforms those algorithms.

I. INTRODUCTION

TRADITIONAL algorithms used in machine learning
and pattern recognition applications are often suscep-

tible to the well-known problem of the “curse of dimen-
sionality” [1]. In this situation, similarity measures among
data suffers from distortions, that is, when the dimension-
ality increases, the volume of the space increases so fast
that the available data samples becomes sparse. As way to
alleviate this problem, dimensionality reduction techniques
[2], [3], [4], [5], which aims at reducing the dimension of
the input data in order to achieve a small set of features
that keeps the most important original relationships among
data samples, are often applied as a data pre-processing step
or as part of the data analysis to simplify the data model.
The great advantages is that by working with a reduced
representation, tasks such as classification or clustering can
often yield more accurate and readily interpretable results,
while computational costs may also be significantly reduced
[6].

Techniques for dimensionality reduction often lie in the
unsupervised or in the supervised learning. A classical ex-
ample of unsupervised technique is the Principal Component
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Analysis (PCA) [7]. PCA is an orthogonal transformation
that represent data by using the so called principal compo-
nents. Usually, a small number of principal components is
sufficient to account for most of the structure in the data. It
maximizes the mutual information between the original high-
dimensional Gaussian distributed measurements and the pro-
jected low-dimensional measurements. As an unsupervised
technique, PCA does not use the class label information of
the input data. In the supervised setting, data instances are
marked with label information that guides the formation of
the low-dimensional space. The labels often take discrete
class values, indicating which data points have to be grouped
together (same class) or set far apart from the other (different
classes) in the embedded space. In the group of supervised
techniques, Linear Discriminant Analysis (LDA) [8] plays an
important role. As a supervised technique, it uses the class
label information of the input data samples. LDA finds a
projection matrix that maximizes the trace of the between-
class scatter matrix and minimizes the trace of the within-
class scatter matrix in the projected subspace simultaneously.

Supervised dimensionality reduction can also be per-
formed by using a graph embedding framework [9]. Graphs
are powerful tools to represent data relationships and have
been applied to a variety of learning tasks [10], [11], [12],
[13], [14], [15], [16]. The purpose of graph embedding is to
represent each vertex (data sample) of a network as a low-
dimensional vector that preserves similarities between the
vertex pairs, where similarity is measured by a graph simi-
larity matrix that characterizes certain statistical or geometric
properties of the data set. The usage of graph embedding for
dimensionality reduction can overcome some limitations of
the LDA technique such as the number of available projec-
tion directions lower than the number of classes, and the
assumption that data is approximately Gaussian distributed
[9].

In this paper, we investigate the usage of the recently
proposed K-Associated Optimal Graph (KAOG) [17] into the
graph embedding framework for dimensionality reduction. A
preliminary study essentially applied to image classification
was conducted in [15] and the results were considered
promising. The KAOG is a network construction technique
which relies on two concepts: a purity measure, which uses
the graph representation to measure mixing levels of the
original data samples regarding their classes given a k-
neighborhood; and the k-associated graph, which can be
considered as an improved adaptive k-Nearest Neighbor (k-
NN) graph. The network construction process consists of
building the k-associated optimal graph, that represents the



data set as a sparse network in which components carry
local information about the underlying data distribution. Fur-
thermore, we propose a modification of the KAOG network
formation to construct a penalty graph, which is required for
the graph embedding framework. The penalty graph conveys
information about which data samples (class components)
should not be close together (different classes) in the reduced
feature space.

Computer simulations were performed to evaluate the
proposed technique. In addition, it was compared, in terms of
predictive performance, to traditional dimensionality reduc-
tion techniques: PCA and LDA; and classical network con-
struction methods: k-NN and ε-radius. Statistical tests have
shown that the new approach outperforms these algorithms.

This paper is organized as follows. Section II introduces
the problem setting of dimensionality reduction. Section
III describes the network formation methods to construct
the scatter-matrices to be used into the graph embedding
framework. Section IV shows the experimental results and
section V concludes the paper.

II. DIMENSIONALITY REDUCTION PROBLEM SETTING

Given a training data set X (l) = {x(l)
i , i = 1, . . . , n},

containing labeled instances, and a test data set X (u) =

{x(u)
i , i = 1, . . . ,m}, containing unlabeled instances,

each instance is described by q attributes, that is, a vector
xi = [xi1, xi2, . . . , xiq]

T , and belongs to a single class
c ∈ {1, . . . , C}, where C is the number of classes. The
goal of the proposed technique is to perform dimensionality
reduction by using the information provided by the labeled
data set X (l) in order to improve classification accuracy or, at
least, to speed up the classification process of the unlabeled
data set X (u) without decreasing the accuracy, given that a
small number q′ of projected attributes is used (q′ < q).

Usually, the feature dimension q can be very high, and
transforming the data from the original high-dimensional
space to a low-dimensional space can alleviate the curse of
dimensionality [1]. To accomplish that, it is needed to find a
mapping function F that transforms x into the desired low-
dimensional representation y, so that y = F (x) (y ∈ Rq′ ).
By using an underlying network to find such function F , the
dimensionality reduction process can be viewed as a graph-
preserving criterion of the following form [9]:

Y ∗ = argmin
∑
i 6=j

||yi − yj ||2Wij = argminY TLY, (1)

constrained to Y TBY = d. In this formulation, d is a
constant vector, Wij is adjacency matrix of the network, B
is the constraint matrix and L is the Laplacian matrix. The
Laplacian matrix can be found via the following operation:

L = D −W, Dii =
∑
i 6=j

Wij ,∀i.

The constraint matrix B can be viewed as the adjacency
matrix of a penalty network WP , so that B = LP =
DP −WP . The penalty network conveys information about
which vertices should not be linked together, that is, which

instances should be far apart after the dimensionality reduc-
tion process. The similarity preservation property from the
graph-preserving criterion has a two-fold explanation. For
larger similarity between samples xi and xj , the distance
between yi and yj should be smaller to minimize the
objective function. Likewise, smaller similarity between xi
and xj should lead to larger distances between yi and yj
for minimization [9].

In this paper, we assume that the low-dimensional attribute
space can be found by using a linear projection such as Y =
XTw, in which w is the projection vector. The objective
function in Eq. 1 becomes:

w∗ = argmin
∑
i 6=j

||wTxi −wTxj ||2Wij

= argminwTXLXTw, (2)

constrained to wTXLXTw = d. By using the Marginal
Fisher Criterion [9] and the penalty network constraint, Eq.
2 becomes:

w∗ = argminw
wTXLXTw

wTXLPXTw
, (3)

which can be solved by the generalized eigenvalue problem
by using the equation XLXTw = λXLPXTw.

III. NETWORK FORMATION TECHNIQUES

The construction of the underlying networks is an elemen-
tary step of the proposed dimensionality reduction technique.
In this section, we provide the concepts related to the
most relevant network formation techniques and propose
the adaptations that we develop to employ them in a new
dimensionality reduction technique.

In a brief overview, there are few techniques related to net-
work construction in the literature. The most used techniques
are ε-radius and k-Nearest Neighbors (k-NN) [18]. However,
both require parameter selection. On the other hand, a
recently proposed technique, named k-Associated Optimal
Graph (KAOG), provides a network that is constructed from
a purity measure, without requiring the usage of parameter
selection [17]. Fig. 1 shows a visual comparation among
the networks obtained by, respectively, ε-radius, k-NN and
KAOG from a data set composed of two mixed Gaussians.
Next subsections introduces these network formation algo-
rithms.

A. ε-Radius Network

In data classification, the ε-radius technique creates a link
between two vertices i and j if two conditions are satisfied:
i and j are within a distance ε and they belong to the same
class:

E = E ∪ {ei,j | di,j ≤ ε & ci = cj} (4)

The ε-radius technique provides a network with higher
density when compared to other graph formation techniques.
An example of the ε-radius network is illustrated in the Fig.
1a. Note that there are a large number of links among the
vertices.



(a) ε-Radius Network (b) k-NN Network (c) KAOG Network

Fig. 1. Network formation algorithms applied to a data set composed of two mixed Gaussians.

As explained in section II, our technique requires the
construction of two matrices: the adjacency matrix and the
penalty matrix. The adjacency matrix (E) is obtained directly
from (4). Alg. 1 presents a simple way to obtain the penalty
matrix B. The algorithm creates a link between i and j in B
if the vertices are within a distance ε and belong two different
classes. In this case, a link means that these vertices should
be far apart after the dimensionality reduction process.

Algorithm 1 ε-radius algorithm
Require: ε and a data set X

1: E,B ⇐ ∅
2: for all i, j ∈ X do
3: if di,j ≤ ε & ci = cj then
4: E ⇐ E ∪ ei,j
5: else if ci 6= cj then
6: B ⇐ B ∪ ei,j
7: end if
8: end for
9: return E and B

B. k-NN Network

The k-NN network construction creates a link between
vertices i and j if two conditions are satisfied: j is one of
the k-nearest neighbors of i and the classes of i and j are
the same, as showed by 5:

E = E ∪ {ei,j | j ∈ K-NN(i) & ci = cj}. (5)

Unlike ε-radius network formation, k-NN is able to rep-
resent sparse regions of the network. Fig. 1b illustrates the
application of the k-NN technique on a data set composed of
two mixed Gaussians. Note that vertices in sparse regions,
which do not link using ε-radius technique (Fig. 1a), are able
to make connections using k-NN formation graph.

We propose a simple way to obtain the penalty matrix B
for the k-NN network as follows. There is a link from i to
j in B only if the j is one of the k-nearest neighbors of i
and their classes are distinct. In consequence, the adjacency

matrix E is obtained from (5). Alg. 2 presents the steps to
obtain E and B.

Algorithm 2 k-NN algorithm
Require: K and a data set X

1: E,B ⇐ ∅
2: for all i, j ∈ X do
3: if j ∈ K-NN(i) & ci = cj then
4: E ⇐ E ∪ ei,j
5: else if ci 6= cj then
6: B ⇐ B ∪ ei,j
7: end if
8: end for
9: return E and B

C. KAOG Network

Differently from the previous graph formation techniques,
the KAOG technique constructs a network guided by a
measure named purity. This measure expresses the level of
mixture of a component in relation to other components of
distinct classes and it is given by:

Φα =
Dα

2Kα
, (6)

where Dα and Kα denote, respectively, the average degree
and the K value associated to the component α. In this way,
KAOG uses the purity measure to construct and optimize
each component of the network.

Alg. 3 shows step by step the construction of KAOG
networks. Note that no parameter is needed by the algorithm.
After the initial setting, a loop starts to merge the subsequent
k-associated graphs by increasing k, while improving the
purity of the network encountered so far, until the optimal
network measured by the purity degree is reached. Basically,
the k-associated graph (KAG) algorithm links a vertex i to
all its k nearest neighbors that belong to the same class of
i (a set denoted by Λi,K). More details about the algorithm
are presented in [17].



Algorithm 3 K-associated optimal graph algorithm
Require: data set X

1: K ⇐ 1
2: G(op) ⇐ K-associated graph(K,X)
3: repeat
4: lastAvgDegree⇐ D(K)

5: K ⇐ K + 1
6: G(K) ⇐ K-associated graph(K,X)

7: for all C(K)
β ⊂ G(K) do

8: if Φ
(K)
β ≥ Φ

(op)
α for all C(op)

α ⊆ C(K)
β then

9: G(op) ⇐ G(op) − ∪
C

(op)
α ⊆C(K)

β

C
(op)
α

10: G(op) ⇐ G(op) ∪ {C(K)
β }

11: end if
12: end for
13: until D(K) − lastAvgDegree < D(K)/K
14: return G(op)

Furthermore, we develop a fast way to obtain the penalty
matrix B for the KAOG network as follows. There is a link
between i and j in B if j is one of the k nearest neighbors
of i, and j belong to a different class of i. Alg. 4 shows
step by step how the links of the adjacency matrix E and
the constraint matrix are done in the k-associated graph. It is
worth noting that the constraint matrix is optimized by the
purity measure too.

Algorithm 4 K-associated graph algorithm
Require: K and a data set X

1: E,B ⇐ ∅
2: for all i ∈ V do
3: if j ∈ Λi,K & ci = cj then
4: E ⇐ E ∪ ei,j
5: else if ci 6= cj then
6: B ⇐ B ∪ ei,j
7: end if
8: end for
9: C ⇐ findComponents(E)

10: for all α ∈ C do
11: Φα ⇐ Eq. (6)
12: G(K) ⇐ G(K) ∪ {(α(V ′, E′, B′); Φα)}
13: end for
14: return K-associated graph G(K)

Fig. 1c illustrates the construction of the KAOG network.
The resulted network is distinct from the ε-radius and k-
NN techniques. The main advantages on these algorithms is
that KAOG network is obtained without any parameter. In
addition, its vertices are linked according to the maximization
of the purity measure. This provides an optimized network
and a robust mechanism to avoid noisy and outliers [17].

IV. EXPERIMENTAL RESULTS

The proposed dimensionality reduction technique was
evaluated by using the KAOG network formation method
as described in Sec. III. Firstly, the proposed technique
was compared to two well-known dimensionality reduction
techniques, PCA and LDA. Secondly, it was compared
to other two classical network formation algorithms, k-
NN and ε-radius. After the dimensionality reduction step,

the projected data set was classified by using the nearest-
neighbor classification rule. In the experiments, we used 5
high-dimensional data sets comprising data from diverse and
different nature. These data sets can be found in the UCI
machine learning repository [19], and Table I summarizes
their corresponding meta-data. Following, we present a brief
overview about each data set:

Sonar The Sonar data set contains patterns obtained by
bouncing sonar signals off a metal cylinder at
various angles and under various conditions. The
transmitted sonar signal is a frequency-modulated
chirp, rising in frequency. Each pattern is a set of
60 numbers in the range 0.0 to 1.0. Each number
represents the energy within a particular frequency
band, integrated over a certain period of time;

Libras The Libras data set contains movements from the
visual language of hear-impaired people. From
recorded videos, the movements were mapped in
a representation with 90 features, with representing
the coordinates of the movements;

Hill In the Hill data set, each record represents 100
points on a two-dimensional graph. When plotted
in order (from 1 through 100) as the y co-ordinate,
the points create either a Hill or a Valley;

Musk1The Musk1 data set describes a set of 92 molecules
of which 47 are judged by human experts to be
musks and the remaining 45 molecules are judged
to be non-musks. To generate this data set, the
low-energy conformations of the molecules were
generated and then filtered to remove highly similar
conformations, resulting in 476 conformations;

CNAE The CNAE data set contains 1080 documents of
free text business descriptions of Brazilian com-
panies categorized into a subset of 9 categories
cataloged in a table called National Classification
of Economic Activities. Each document was repre-
sented as a vector, where the weight of each word
is its frequency in the document.

TABLE I
META-DATA OF THE SIMULATED DATA SETS.

Data set # Instances Dimension

Sonar 208 60
Libras 360 90
Hill 606 100
Musk1 476 166
CNAE 1080 856

Each experiment was performed by using a 10-fold strat-
ified cross-validation process [20]. In this process, the data
set is split in 10 disjoint sets and, in each run, 9 sets are used
as training data and 1 set is used as the test data, resulting
in a total of 10 runs. The results are averaged over 30 runs,
totaling 10 × 30 = 300 runs. Following, we show how the
parameters were adjusted for each technique:



• For the principal component analysis algorithm (PCA),
parameter number of components was optimized ac-
cording to the heuristic proposed in [21]. Note that PCA
does not consider the class label information, but it is
usually applied in supervised learning as part of the data
analysis to simplify the data model.

• For the linear discriminant analysis algorithm (LDA),
parameter number of components was optimized in
the interval {1, 2, . . . , C − 1}, where C is the number
of classes in the data set;

• For the k-NN network formation technique, parameter
k was optimized in the interval from 1 to the number
of instances of the largest class in the training data set;

• For the ε-radius network formation method, parameter
ε was optimized in the interval {5%, 10%, . . . , 100%},
concerning the average distance among instances in the
training data set;

• For the KAOG method, remember that selection of
parameters is unnecessary.

Table II shows the results of classification accuracy after
dimensionality reduction by using the three different net-
work formation methods and two traditional dimensionality
reduction techniques. In the last column of this table it can
be seen the classification accuracy without any dimension-
ality reduction process for comparison purposes. In order
to analyze statistically the results, we adopted a statistical
test that compares multiple classifier over multiple data sets
[22]. Firstly, Friedman test is calculated to check whether
the performance of the classifiers are significantly different.
Using a significance level of 5%, the null hypothesis is
rejected. This means that the algorithms under study are
not equivalent. Following a post-hoc test, Nemenyi test is
employed (also considering a significance level of 5%). The
results of this test is showed in Table III and it indicates
that KAOG outperforms all other techniques, including the
traditional PCA and LDA algorithms. In addition to the good
predictive results obtained by our approach, the use of the
dimensionality reduction method present other advantages
when compared to the original dimension of large data set,
such as: (i) the reduced number of features which implies
in decreasing the training and/or classification time; and (ii)
the robustness to noisy and irrelevant features that can impact
negatively on accuracy. A visual comparison of the proposed
technique results to the original number of attributes can be
seen in Fig. 2.

Now, we move on to an interesting analysis about k-NN,
ε-radius and KAOG network formation techniques which
were adapted into a graph embedding framework to perform
supervised dimensionality reduction in this paper. Table IV
shows the number of attributes after dimensionality reduction
for the results in Table II. The proposed technique achieved
dimensionality reductions up to 55.26% (CNAE data set)
of the number of the original feature space. The other net-
work formation methods also achieved good dimensionality
reduction rates, but with a smaller classification accuracy (see
Table II).

TABLE III
RESULTS OF THE FRIEDMAN/NEMENYI STATISTICAL TEST.

“BETTER/WORSE” INDICATES THAT THE ALGORITHM CORRESPONDING

TO ITS COLUMN IS BETTER/WORSE THAN THE ALGORITHM

CORRESPONDING TO ITS ROW (A REJECTION OF THE NULL

HYPOTHESIS). “NO” SUGGESTS THAT BOTH THE COLUMN ALGORITHM

AND THE ROW ALGORITHM PERFORM EQUALLY WELL (A FAILURE TO

REJECT THE NULL HYPOTHESIS AT THE 5% SIGNIFICANCE LEVEL).

PCA LDA KAOG k-NN ε-radius

LDA No - - - -
KAOG Worse Worse - - -
k-NN Better Better Better - -

ε-radius Worse Worse Better Worse -
Orig. dimen. Worse Worse Better Worse No

Fig. 2. Results of the proposed dimensionality reduction technique for the
5 data sets for comparison to the original attribute space size. It can be seen
that for the largest data set (CNAE) the reduction is relevant, almost half
the original space.

For the sake of completeness, Fig. 3 shows the classifi-
cation accuracy after dimensionality reduction performed by
the proposed technique by using from 1 to the number of
attributes of the original feature space. It can be seen that
the highest accuracy is achieved by using a small number
of projected attributes, specially for data sets Sonar (44
attributes) and CNAE (473 attributes).

V. CONCLUSION

We have studied the usage of a modified version of the
recently proposed K-Associated Optimal Graph (KAOG) to
perform supervised dimensionality reduction. The proposed
technique derives two adjacency matrices which represent
the intra-class and the inter-class information of the input
data. Both matrices are used into a graph embedding frame-
work which is optimized in terms of a projection vector.
Experimental studies and statistical tests have showed that
the proposed technique achieves competitive dimensionality
reduction and better predictive results compared to some
other traditional techniques and network formation methods.
As future studies we suggest an analysis concerning the
stop criterion of the KAOG graph in order to enhance the



TABLE II
CLASSIFICATION ACCURACY (%) BY USING THE REDUCED PROJECTED ATTRIBUTE SPACE AFTER DIMENSIONALITY REDUCTION PERFORMED BY 3

UNDERLYING NETWORKS: KAOG, K-NN AND ε-RADIUS. THE ACCURACY BY USING THE ORIGINAL DIMENSION IS SHOWED FOR COMPARISON

PURPOSES. THE BEST RESULTS ARE IN BOLDFACE.

Data set PCA LDA KAOG k-NN ε-radius Orig. dimen.

Sonar 83.16 ± 7.92 71.39 ± 9.07 84.90 ± 20.90 79.01 ± 24.44 84.65 ± 9.57 83.30 ± 10.60
Libras 84.86 ± 5.27 67.61 ± 7.31 85.06 ± 9.26 73.93 ± 17.94 84.89 ± 7.24 84.89 ± 5.76
Hill 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.15 100.00 ± 0.00 100.00 ± 0.15 100.00 ± 0.00
Musk1 85.92 ± 4.00 80.32 ± 5.05 86.23 ± 11.25 80.21 ± 13.57 85.93 ± 8.66 85.93 ± 8.17
CNAE 84.75 ± 3.40 87.32 ± 10.59 87.30 ± 9.08 83.63 ± 10.02 86.19 ± 5.34 86.24 ± 5.61

Fig. 3. Classification accuracy by using different numbers of projected dimensions. It can be seen that the highest accuracy is achieved by using a small
number of projected attributes, specially for data sets Sonar (44 attributes) and CNAE (473 attributes).

TABLE IV
PROJECTED LOW-DIMENSION USED FOR CLASSIFICATION AFTER

DIMENSIONALITY REDUCTION FOR THE RESULTS IN TABLE II. THE

PERCENTAGES OF THE NUMBER OF PROJECTED ATTRIBUTES COMPARED

TO THE ORIGINAL FEATURE SPACE ARE IN PARENTHESIS.

Data set KAOG (%) k-NN (%) ε-radius (%)

Sonar 44 (73.33) 50 (83.33) 38 (63.33)
Libras 90 (100.00) 86 (95.56) 90 (100.00)
Hill 89 (89.00) 24 (24.00) 89 (89.00)

Musk1 126 (75.90) 165 (99.40) 126 (75.90)
CNAE 473 (55.26) 729 (85.16) 473 (55.26)

network representatin of the input data distribution, and new
experimental studies including other classification rules.
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