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Abstract—Graph-based dimensionality reduction has attracted
a lot of attention in recent years. Such methods aim to exploit
the graph representation in order to catch some structural
information hidden in data. They usually consist of two steps:
graph construction and projection. Although graph construction
is crucial to the performance, most research work in the literature
has focused on the development of heuristics and models to
the projection step, and only very recently, attention was paid
to network construction. In this work, graph construction is
considered in the context of supervised dimensionality reduction.
To be specific, using a nature-inspired optimization framework,
this work investigates if an optimized graph is able to provide
better projections than well-known general-purpose methods.
The proposed method is compared with widely used graph con-
struction methods on a range of real-world image classification
problems. Results show that the optimization framework has
achieved considerable dimensionality reduction rates as well as
good predictive performance.

Keywords—Graph-based dimensionality reduction; nature-
inspired graph optimization; graph-based machine learning;

I. INTRODUCTION

Dimensionality reduction (DR) is a well-known machine
learning and pattern recognition task which aims to reduce
the dimension of the input data while maintaining the features
of interest [1]. Among various DR methods, the graph-based
ones have attracted increasing interest [2]. Many of these
methods fall into a graph embedding framework [3] commonly
consisting of two steps. The first step is graph construction,
in which data items are taken as nodes and their edges are
usually given by some affinity measure. The second step learns
a projection which transforms the original high-dimensional
data into a lower-dimensional space.

Derived from ISOMAP [4], Locally Linear Embedding [5],
Laplacian eigenmap [6], Marginal Fisher Analysis (MFA) [3],
t-SNE [7] and others, a wide range of projection models and
heuristics have been proposed in the literature. By contrast,
graph construction, which is considered as an important step
in graph-based DR, has received attention only recently [8]–
[10], especially in the supervised DR context. In fact, the most
commonly used graph construction methods are based on the k
nearest neighbors (kNN) criterion [11]. Such a neighborhood
graph does not necessarily benefit subsequent DR task as
it is artificially defined in advance. In this sense, GoLPP

[12] and GoDRSC [13] aimed to integrate graph construction
with a specific DR process into a unified framework, thereby
obtaining an optimized graph rather than a predefined one.
Despite both related works were designed for unsupervised
DR, they also serve as a motivation to create new graph
construction approaches for supervised DR.

This article investigates a nature-inspired optimization
framework for graph-based supervised DR. The framework,
which is based on [14], is designed to build up the graph
while optimizing a given quality function. The quality function
used is based on the MFA approach presented in [3] and
combines locality and class label information to represent
intra-class compactness and interclass separability. In contrast
to existing works where a specific value is assigned to the
connections by all vertices, the connections here are iteratively
updated by a robust particle swarm optimization method [15].
Experiments have been performed over a range of real-world
image classification problems. In addition, the proposed graph
construction approach is compared with two general-purpose
methods widely used in the literature, symmetric and mutual
kNN [11].

The remainder of the work is organized as follows: Section
II covers a relevant background about DR problem, graph
construction methods and the graph embedding approach
considered here; Sections III and IV describes the proposed
approach and the experimental results, respectively; and Sec-
tion V concludes the article.

II. BACKGROUND

A. Problem Definition

In the problem concerned here, the algorithms receive as
input a training data set denoted by XTrain = {xi, i =
1, . . . , n}, containing n labeled items, and a test data set
XTest = {xi, i = n + 1, . . . ,m}, containing m unlabeled
items. Each item is described by a attributes, that is, a
vector xi = [xi1, xi2, . . . , xia]T , and belongs to a single class
li ∈ {1, . . . , C}, where C is the number of classes. The goal of
the proposed technique is to perform dimensionality reduction
by using the information provided by the labeled data set
XTrain in order to improve classification accuracy or, at least,
to speed up the classification process of the unlabeled data set



XTest without decreasing the accuracy, provided that a small
number a′ of the projected attributes is used (a′ < a).

B. Graph Construction Methods
Consider an undirected graph G = (V, E) where each node

vi ∈ V represents a data item xi ∈ XTrain. Let kNN(i) be
the set of k nearest neighbors of xi calculated from a distance
matrix S. The adjacency matrix A of a kNN-graph is obtained
as follows:

Aij =

{
1, if xj ∈ kNN(i)

0, otherwise.
(1)

As the kNN-graph may not be symmetric, two strategies are
commonly used to assure this: symmetric kNN and mutual
kNN. A symmetric kNN graph (SkNN) is obtained as follows:

A = max(A,AT ) . (2)

By contrast, the mutual kNN graph (MkNN) is given by:

A = min(A,AT ) . (3)

C. Graph Embedding Approach
In this article, the projection step is conducted by the

Marginal Fisher Analysis criterion [3]. This method charac-
terizes intra-class compactness and inter-class separability by
using the preserving (or intrinsic) graph and the penalty graph,
respectively. To be specific, MFA seeks w which minimizes
the intra-class compactness and maximizes the inter-class
separability at the same time, i.e.:

w∗ = arg minw
wTXLXTw

wTXLPXTw
, (4)

which can be solved by the generalized eigenvalue problem
by using the equation XLXTw = λXLPXTw. In this
formulation, L denotes the Laplacian matrix of the preserving
network A, which can be found via the following operation:

L = D −A, Dii =
∑
i 6=j

Aij ,∀i. (5)

Conversely, the constraint matrix B can be viewed as the
adjacency matrix of a penalty network AP , so that B = LP =
DP − AP . The penalty network conveys information about
which vertices should not be linked together, that is, which
instances should be far apart after the dimensionality reduction
process. The similarity preservation property from the graph-
preserving criterion has a two-fold explanation. For larger
similarity between samples xi and xj , the distance between yi

and yj should be smaller to minimize the objective function.
Likewise, smaller similarity between xi and xj should lead to
larger distances between yi and yj for minimization [3].

III. MODEL DESCRIPTION

In this section, the nature-inspired optimization framework
(NIO for short hereafter) is described in details. Unlike most
graph embedding DR techniques, which focuses on the projec-
tion step, the proposed method focuses on the graph construc-
tion step, i.e., it assumes that by providing an optimal network
regarding a given processing goal, the general performance can
be improved.

A. Overview

The graph optimization framework employed in this study
is based on that presented in [14], which conducts graph
structural optimization using the recently proposed social
learning particle swarm optimization (SL-PSO) [15]. In a few
words, SL-PSO initializes a swarm of particles, with each
one denoting a randomly initialized decision vector. Unlike
traditional particle swarm optimization algorithms, it does not
memorize the historical best positions. Instead, it sorts the
swarm according to the fitness values of the particles, and
as a consequence, each particle is made to learn from any
better particles in the current swarm. Such salient features
make SL-PSO robust on high-dimensional problems and a
similar version of SL-PSO has been successfully applied to
high-dimensional feature selection [16].

The main steps of the general framework adopted here are
illustrated by Fig. 1. Initially, SL-PSO creates a population of
particles, where each particle Pi is composed by two graphs
G and B. Then, at each iteration t, the particles are evaluated
and updated (∆) according to a quality function f . At the end,
SL-PSO returns the particle with the best quality value, which
contains the graphs to be equipped into the DR approach. To
be specific, NIO is divided in two phases:
• Optimization In this phase, NIO employs SL-PSO algo-

rithm to construct the preserving and penalty graphs from
the training data XTrain according to the optimization of
a given quality function f under a given validation data
set XV alid.

• Testing Here, NIO is equipped with the preserving and
penalty graphs of the best particle learned during the
optimization phase. The projection attributes learned from
these graphs are then employed to reduce the number
of features as well as to classify any unlabeled data
xi ∈ Xtest.

B. Optimization Phase

The optimization phase consists of three main concepts:
network representation, mapping heuristic, and preserving and
penalty graph. Network representation refers to model particles
into networks and vice versa. Due to the high number of pos-
sible particle (network) configurations, two mapping heuristics
are designed in order to reduce the time complexity. Based on
such mapping heuristics, the preserving and penalty graphs
convey information about intra-class and inter-class vertices,
respectively. Following we discuss each of these concepts.

1) Network Representation: Given a swarm of m particles
P = {P1, . . . , Pm}, each particle Pi ∈ P can be represented
as follows:

Pi = {Gi, Bi}, (6)

where Gi and Bi denote the preserving and penalty graph,
respectively.

In the data representation designed for NIO, each particle Pi

denotes a labeled data item xj ∈ XTrain as a vertex vj ∈ Vi,
i.e.:

Vi = {v1, . . . , vn}, (7)



Fig. 1. A general view of the nature-inspired graph optimization framework for dimensionality reduction.

where n means the number of data items (or vertices). The
possible connections of each vertex vj are represented by:

vj = {pj1, . . . , pjq}, (8)

with q denoting the maximum number of links and pjk
denoting the probability of a link between node vj and node
vk. Values of pjk are continuous and vary between [0, 1] in
order to be manipulated by SL-PSO. By contrast, the graph
connections are encoded with binary values, denoted as p′jk,
which can be obtained as:

p′jk =

{
1, if pjk ≥ 0.5,

0, otherwise.
(9)

2) Mapping Heuristic: Given a graph with n vertices, the
total number of possible edges is n2 and the complexity of
the search space is O(n2). However, since n can be as large
as hundreds or even thousands, a search complexity of O(n2)
is infeasibly expensive. To address this issue, we designed a
mapping function that creates a sub-dimensional space based
on the features of the given data set XTrain, which reduces
the search complexity from O(n2) to O(n) (O(n · q), q � n)
by using the following steps:

1) Compute the similarity among the instances;
2) Select q more similar vertices for each vertex vi;
3) Create Mapn×q matrix according to some mapping

heuristic.
Two mapping heuristics for DR are proposed in this article:
symmetric MapSym and mutual MapMut. Given two vertices
vj and vz (with z = Mapjk), MapSym is based on SkNN

and considers a possible link ejz if vz is among the q nearest
neighbors of vj or vice versa. By contrast, MapMut, which
is based on MkNN, assumes a possible connection between
ejz only if both vertices are among the q nearest neighbors of
each one, i.e., vj ∈ kNN(vz) and vz ∈ kNN(vj).

3) Preserving and Penalty Graphs: After the mapping
heuristic is calculated, the edges of both graphs G = {V, EG}
and B = {V, EB} can be obtained. Let us consider a
connection ejz . To be specific, such a link will belong to
the preserving graph G if both data items xj and xz have
the same class label; otherwise, it will be represented in the
penalty graph B; i.e.:

ejz ∈

{
EG , if lj = lz,

EB, otherwise.
(10)

An illustrative example covering the network representation,
the mapping heuristic and the preserving and penalty graphs
is shown by Figure 2. The step (i) in the figure presents
both mapping heuristics investigated: MapSym (Fig. 2a) and
MapMut (Fig. 2b). It also emphasizes particular characteristics
of each one. For example, vertices in positions q1 and q5 in Fig.
2b do not have links with vj as they are not mutual nearest
neighbors (i.e., vj is not among the q nearest neighbors of
them). Steps (ii) and (iii) show an example about the trans-
formation of the solutions from the vector-based probability,
which is manipulated by SL-PSO, to the graph. Step (iv)
denotes the formation of the preserving graph (left-hand side)
and the penalty graph (right-hand side).



(a) MapSym: Symmetric Mapping Heuristic (b) MapMut: Mutual Mapping Heuristic

Fig. 2. Illustrative example of the nature-inspired framework representation considering MapSym and MapMut mapping heuristics. Steps (i-iv) denote the
mapping matrix, the SL-PSO representation, the graph encoding and the plotted graph. If vertices have the same class label as vj , they are colored by blue;
otherwise, by red color. In Fig. 2b, the white color denotes vertices that do not are mutual nearest neighbors of vj .

C. Test Phase

The test phase consists of applying the best particle (i.e.,
preserving and penalty graphs) learned from the optimization
phase to any new test data xi ∈ Xtest, which means that each
unlabeled data is projected to another dimensional space and
classified according to the quality function f .

D. Quality Function

The quality function f evaluates each particle (or network
configuration) in NIO. Basically, f consists of a graph em-
bedding DR technique and a classifier. The former receives
the preserving and penalty graphs G and B, respectively, and
calculates the projection vector after the Laplacian matrix of
both graphs is obtained, such as defined in (4) and (5). The
latter is responsible to evaluate the projected data in terms
of prediction and reduction of features. In terms of predictive
performance, a classifier predicts the labels of the projected
validation data after being trained over the projected training

data. In terms of dimensionality reduction, the predictive
performance of such a classifier is evaluated over a distinct
number of features.

Formally, let Q be a vector in which each position Qi

denotes a given number of projected features to be considered,
let also Acc(Qi) be the predictive accuracy achieved by a clas-
sifier after training and predicting over Qi projected features.
While max(Acc) is returned in the test phase, the optimization
phase returns the averaged accuracy among the number of the
projected features, i.e.:

f =
1

|Q|
∑
i

Acc(Qi). (11)

Briefly, each particle in SL-PSO is evaluated by taking into
account its predictive performance under |Q| cases, each one
denoting a distinct number of projected features. Thus, (11)
provides a smooth function to conduct the optimization phase.



IV. EXPERIMENTAL RESULTS

Experiments have been conducted in order to compare
the proposed method against widely used graph construction
methods, such as SkNN and MkNN, where the performance is
evaluated over high-dimensional real-world data sets in terms
of reduction of the number of features and predictive accuracy.

The data sets are from the ETH-80 collection, which com-
prises a total of 3280 images divided in 8 categories: Apple,
Car, Cow, Cup, Dog, Horse, Pear and Tomato, as shown by
Fig. 3. Each category contains 10 objects that span large in-
class variations while still clearly belonging to the category.
For each object, there are 41 images from viewpoints spaced
equally over the upper viewing hemisphere (at distances from
22.5o to 26.0o). For instance, Fig. 4 shows the 41 images of
two apples objects from Apple category.

Fig. 3. The eighty objects of the ETH-80 collection.

(a) Apple category - Object 2 (b) Apple category - Object 7

Fig. 4. Two objects of the Apple category in ETH-80 collection.

The preprocessing of the data sets included the following
steps: the images were down-sampled from 128×128 (original
size) to 32×32 to speed up processing; a total of 512 features
were extracted for each image by calculating its histogram; and

the similarities among images are calculated by the euclidean
distance.

Each simulation consists of a 10-fold stratified cross-
validation process. In this process, the data set is split in 10
disjoint sets and, in each run, 9 sets are used as training data
and 1 set is used as the test data, resulting in a total of 10 runs.
In each run, the training data is divided: 75% as sub-training
(XTrain) and 25% as validation (XV alid). By doing this, we
assure an unbiased learning as the testing data is outside of the
learning process. After the dimensionality reduction step, the
projected data set was classified by using the nearest-neighbor
classification rule. The results of each run are averaged over
5 different executions (using different random seed).

The optimization framework has four parameters to be set:
the size of the swarm population m, the number of iterations
it, the maximum number of possible links q and the number
of projected features to be considered by the quality function
Q, which are defined as m = 100, it = 100, q = 3 and Q =
{10%, 20%, . . . , 100%} of the original number of features.

The experiments are divided in two groups in order to
better evaluate the proposed mapping heuristics. Firstly, NIO
is equipped with MapSym heuristic and its predictive per-
formance is compared with the widely used SkNN method.
Table I lists the best average accuracy obtained by each
approach. The table also includes results of the 1NN classifier
considering all the original features. In order to analyze
the results, the Wilcoxon’s test is performed for pairwise
comparison of the algorithms [17]. The statistical test results,
presented in the same table, reveal that the graph embedding
DR technique performs statistically better with our graph
optimization framework than SkNN (with a confidence level of
90%) and the baseline (95%). Figure 5 presents a comparative
analysis between both graph-based DR approaches on the
first four data sets, which demonstrates NIO has much better
predictive performance on the images of Apple category.

TABLE I
RESULTS IN TERMS OF AVERAGE ACCURACY CONSIDERING A BASELINE
OVER THE ORIGINAL FEATURES (1NN) AND A GRAPH EMBEDDING DR

METHOD IN WHICH THE GRAPHS ARE PROVIDED BY A WIDELY USED
METHOD (SkNN) OR BY THE OPTIMIZATION FRAMEWORK EQUIPPED

WITH THE PROPOSED SYMMETRIC MAPPING HEURISTIC (NIO-MapSym).
THE LAST LINE OF THE TABLE PRESENTS RESULTS OF THE WILCOXON

STATISTICAL TEST.

Dataset Orig. Features Graph Embedding DR

1NN SkNN NIO-MapSym

Apple 85.57 ± 2.56 81.03 ± 1.21 83.37 ± 1.85
Car 75.82 ± 4.31 86.71 ± 0.87 86.46 ± 0.96
Cow 49.94 ± 4.40 71.93 ± 1.76 72.28 ± 1.70
Cup 89.14 ± 2.26 85.74 ± 1.12 87.56 ± 1.86
Dog 63.13 ± 3.95 78.89 ± 1.72 78.37 ± 1.54
Horse 58.72 ± 4.29 86.47 ± 0.40 86.88 ± 0.43
Pear 59.99 ± 3.69 72.79 ± 1.96 77.04 ± 2.01
Tomato 88.12 ± 3.85 91.49 ± 1.03 92.83 ± 1.42

NIO-MapSym p < 0.05 p < 0.10 ∼

Now we move on to evaluate NIO using the mutual map-
ping heuristic. In this group of simulation, the optimization



(a) Apple category (b) Car category (c) Cow category (d) Cup category

Fig. 5. Comparative analysis between NIO-MapSym and SkNN over ETH-80 categories in function of average accuracy and number of projected features.

(a) Dog category (b) Horse category (c) Pear category (d) Tomato category

Fig. 6. Comparative analysis between NIO-MapMut and MkNN over ETH-80 categories in function of average accuracy and number of projected features.

framework is compared against MkNN, a well-known graph
formation method. Table II presents the average accuracy
of both graph embedding DR approaches. 1NN results are
the same of the Table I. Again, the results of the Wilcoxon
test show that NIO-MapMut graph embedding DR approach
performs statistically better than the SkNN one (90%). A
comparative analysis between both methods is presented in
Fig. 5. The figure shows NIO method performs better than
MkNN in most scenarios, especially those considering Pear
and Tomato categories.

TABLE II
AVERAGE ACCURACY OF THE 1NN CLASSIFIER OVER THE ORIGINAL

FEATURES (1NN) AND OF THE GRAPH EMBEDDING DR EQUIPPED WITH
THE WELL-KNOWN MkNN GRAPH CONSTRUCTION METHOD AND WITH

THE BIOINSPIRED OPTIMIZATION FRAMEWORK USING THE MUTUAL
MAPPING HEURISTIC (NIO-MapMut). LAST LINE PROVIDES RESULTS OF

THE WILCOXON STATISTICAL TEST.

Dataset Orig. Features Graph Embedding DR

1NN MkNN NIO-MapMut

Apple 85.57 ± 2.56 81.03 ± 1.21 83.81 ± 1.41
Car 75.82 ± 4.31 86.91 ± 0.96 86.17 ± 0.90
Cow 49.94 ± 4.40 72.03 ± 1.67 72.08 ± 1.67
Cup 89.14 ± 2.26 85.79 ± 1.17 88.03 ± 1.74
Dog 63.13 ± 3.95 78.29 ± 1.62 78.19 ± 1.03
Horse 58.72 ± 4.29 86.07 ± 0.85 86.52 ± 0.26
Pear 59.99 ± 3.69 73.84 ± 1.70 77.69 ± 1.28
Tomato 88.12 ± 3.85 92.13 ± 1.06 93.52 ± 0.88

NIO-MapMut p < 0.05 p < 0.10 ∼

Finally, Fig. 7 presents a visual comparison between the
original features space and that projected by our method. One
can see the proposed NIO method has achieved reasonable
dimension reduction rates, between 30% and 70% of the

original features.

Fig. 7. Analysis of the reduction of the number of features in comparison
with the original features space.

V. CONCLUSION

This article investigated graph construction for dimen-
sionality reduction by using a nature-inspired optimization
framework. Different from most work in the literature, where
a specific value defines the number of connections for all
vertices, our framework is able to build up the preserving and
penalty graphs while optimizing the performance of the graph
embedding approach, i.e., it integrates graph construction and
projection into a unified framework. Experiments over a range
of real-world image classification problems have shown the
advantages over some other widely used graph construction
methods. Moreover, results show that the optimization frame-
work achieved considerable dimension reduction rates while
also achieving good predictive performance.



Future work includes the investigation of embedding other
graph-based DR approaches into our optimization framework;
the comparison with other optimization and graph construction
methods; and the evaluation of other quality functions and
real-world problems.
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