
Analysis of Graph Construction Methods in
Supervised Data Classification

Murillo G. Carneiro
Faculdade de Computação

Universidade Federal de Uberlândia
Uberlândia, Brazil
mgcarneiro@ufu.br

Liang Zhao
Departamento de Computação e Matemática
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Abstract—Graph-based methods have attracted a lot of at-
tention in recent years, especially due to its inherent ability to
capture properties of the networked data (e.g., structural and
dynamical). Clustering, semi-supervised label propagation and,
more recently, data classification are examples of tasks in which
graph-based learning methods have obtained relevant results. In
any of these tasks, the common approach is (i) to transform
the feature vector data in a graph and then (ii) exploit some
property uncovered by the network structure. However, most
works have focused on the development of models to exploit
the graph, while the graph construction step has been little
explored. In this article, we conduct a preliminary study to
evaluate supervised graph construction methods based on k-
nearest neighbors (kNN) and ε-radius neighborhood (εN) criteria
by employing a recently proposed classification technique based
on the importance concept of complex networks. Experiments
were conducted on artificial and real-world data sets, including
the problem of invariant pattern recognition in images. The
results show that the graph construction methods under study
are able to deal with different configuration of problems (e.g.,
domain, features, etc). They also suggest that the combination
between selective kNN and εN is more suitable in data sets with
low level of mixture among the classes, while kNN seems slightly
better in problems with higher noise levels.

Index Terms—Graph construction, Network formation, Data
Classification, Importance-based classification, PageRank, Com-
plex Networks, Supervised Learning

I. INTRODUCTION

Data classification is one of the most important tasks in ma-
chine learning. Medical disease diagnosis, income tax fraud,
spam detection and digit recognition are common examples
of problems addressed as a classification task. Formally, a
data classification problem is composed by a set X of labeled
objects, in which each object i ∈ X is denoted by the
following tuple (xi, yi), with xi = {f1, . . . , fd} denoting the
d-dimensional input features of object i and yi ∈ {1, . . . , C}
the class label associated with it according to an unknown
function (oracle, expert, etc) f(x) → y. Data classification
has commonly two phases: training and test. In the training
phase, it aims to build a classifier, i.e., learn a known function
f ′, which maps the input features to the class f ′(x)→ y, such
that f ′ ≈ f . In the test phase, a new object j ∈ U which the
class is unknown, i.e., denoted by the tuple (xj , ?), is labeled
by f ′. Notice that an unbiased learning implies that U∩X = ∅.

Despite that the most known examples of f ′ functions
include some kind of learning based only on the physical
features of the data (e.g., distribution or distance), such as
neural networks, decision trees, instance-based methods, sup-
port vector machines, etc, there are also recent classification
techniques which also considers topological patterns of the
data by using graphs [1]. Formally, the set of X labeled objects
is transformed into a graph G = {V,E} according to some
graph construction function g, i.e., g(X ) → G; each vertex
vi ∈ V denotes a labeled instance i ∈ X and each edge
ei,u ∈ E a link between vertices vi, vu ∈ X . Graph-based
learning is usually associated to a function f ′ which exploits
some information (e.g., spatial, structural or dynamical) of the
networked data. Thus, G plays a key role in the predictive
results as the pattern formation of the classes are directly
extracted from it.

In order to extract relevant properties of the networked data,
complex networks concepts and measures have been largely
employed in machine learning to provide structural analysis of
the data, especially in tasks such as clustering, dimensionality
reduction and semi-supervised label propagation [2]–[7] . On
the other hand, the usage of complex networks in graph-based
supervised classification has been a recently explored topic.
In the related literature, [1] proposed a hybrid classification
framework to consider the semantic relations among the data
instances by combining the associations produced by tradi-
tional (e.g., neural networks) and network-based techniques,
with this latter using a set of complex network measures
to estimate the membership of a test item according to the
data pattern formation. In [8] is proposed a technique that
performs classification by calculating the limiting probabilities
of the random walk theory over an adjacency matrix which
carries both physical and structural information about the data.
Another related work is [9] which proposed a new data classi-
fication concept based on the importance concept of complex
networks, in which instead of data space division as having
been done in traditional techniques or pattern conformation
as having been done in high-level classification techniques,
the classification considers the individual importance of each
data item in order to classify an unlabeled item into that class
where it has the highest importance.

Although the above mentioned works have considerable



contribution in terms of graph exploitation, they do not focus
on graph construction methods. Indeed, there are very few
reported graph construction methods proposed to directly han-
dle vector-based data in the supervised learning literature [1],
[10], while a reasonable amount of studies has proposed graph
methods for unsupervised, semi-supervised and dimensionality
reduction tasks (e.g., [11]–[19]). Thus, the supervised works
usually employ simple graph construction methods like the
k-nearest neighbors (kNN) [20] or one of its variations,
such as the combination between kNN and ε-neighborhood
(εN) criteria [1] or the k-associated optimal graph [10], [21],
[22]. Recent works have also introduced the usage of nature-
inspired algorithms in order to construct optimized graphs for
supervised data classification [23].

Due to the lack of comparative analysis among supervised
graph construction methods, this paper presents a prelimi-
nary study in this sense. By adopting the recently proposed
importance-based classification technique [9], we evaluate the
graphs provided by four supervised graph construction meth-
ods based on k-nearest neighbors and ε-radius neighborhood
criteria. Such methods are evaluated over artificial and real-
world data sets, including the problem of invariant pattern
recognition in images.

The remainder of the paper is organized as follows. Sect.
II describes the importance-based classification as well as the
graph construction methods under study. Sect. III presents the
experimental results obtained by our models over artificial and
real-world data sets. Finally, Sect. IV concludes the paper.

II. MODELS DESCRIPTION

In this section we present an overview about the methods
investigated. Sub-sect. II-A introduces the importance-based
classification and Sub-sect. II-B describe in details the graph
construction methods under study.

A. Importance-based Classification

The importance-based classification is a recently proposed
technique based on complex network measures which con-
siders the individual importance of each data item in order
to classify an unlabeled item into that class where it has
the highest importance [9]. In the technique, the concept of
importance is derived from PageRank, the ranking measure
operating behind the universal search engine of Google. For
short, hereafter, we will refer to this technique as PGR as it
is derived from PageRank.

PGR can be divided in two phases:

• Training phase. In the training phase, the technique
builds up a network G by employing a graph construc-
tion method g over a set X of labeled items and then
exploits G by calculating the efficiency patterns E of its
components and also the individual importance I of each
vertex (given by the PageRank formulation).

• Test phase. In the testing phase, a test item j ∈ U is
presented to PGR, which selects vertices to temporarily

connect to j by considering a measure named spatio-
structural differential efficiency. After that, the impor-
tance score of j to each class is calculated. At the end, j
is classified into that class where it has more importance.

Formally, the importance I of a test instance j with respect
to a given class L is given by:

I
(L)
j =

∑
vi∈ΛL

j

Ii , (1)

where vi ∈ Xtrain denotes a labeled node, ΛLj is the set
of nodes pertaining to the class L where j is temporarily
connected, and Ii means the importance of node vi (calculated
from PageRank formulation [24]). In addition, the set of tem-
porary links to j is obtained from the following formulation:

ΛLj ∪ {vi | Fj,i ≥ 0 and yi ∈ L} (2)

where Fj,i denotes the spatio-structural differential efficiency,
which adds vertex i to ΛLj if a link between j and i increases
the efficiency of its component. Fj,i is given by:

Fj,i = Eα
vi∈α

.γ −Dj,i , (3)

where Dy,j refers to the distance between nodes y and j, Eα
is the efficiency of the component α, and γ is a parameter
which fits the component efficiency values obtained from the
network formation method. The efficiency of a component Eα
can be defined as the average value of the local efficiency ξ
of the nodes that belong to α, i.e.,

Eα =
1

Nα

∑
i∈α

ξ
(α)
i , ξ

(α)
i =

1

Ni

∑
i→j

Di,j (4)

where Nα denotes the number of nodes in the component
α, Ni denotes the number of links from i and Di,j is the
proximity measure between nodes i and j. Please refer to [9]
for more details about PGR.

B. Supervised Graph Construction Methods

In the machine learning literature, the most common graph
construction methods are the k-nearest neighbors and ε-radius
neighborhood [11]. The former creates a link from vertex vi
to vu if vu is one of the k nearest neighbors of vi; and the
latter creates a link between vertex vi and vu if the distance
(or similarity) between them is less than a pre-defined value
ε. In case of supervised learning, there are also the class label
of the training data which needs to be the same between vi
and vu, i.e., yi = yu [10].

In the following, we define the four graph construction
methods analyzed in this preliminary study. Formally, let S
be a distance matrix in which Siu = δ(xi, xu) and kNN(xi)
be the set of k nearest neighbors of xi.

1) kNNG: The adjacency matrix A of a kNN graph is:

Aiu =

{
1, if xu ∈ kNN(xi) and yi = yu

0, otherwise.
(5)



2) kNN+εNG: The adjacency matrix A of the combination
of a kNN and εN graphs is given by:

Aiu =


1, if xu ∈ kNN(xi) and yi = yu

1, if Siu < ε and yi = yu

0, otherwise.
(6)

Alternatively, it is also possible to remove the comparison
between the objects classes by calculating the distances only
among objects of the same class, which we called Selective
kNN (Sel-kNN). Besides the methods already listed, we also
evaluate these below.

3) Sel-kNNG: The adjacency matrix A of a Selective kNN
graph is given by:

Aiu =

{
1, if xu ∈ Sel-kNN(xi)

0, otherwise.
(7)

4) Sel-kNN+εNG: The adjacency matrix A of the combi-
nation of Selective kNN and εN graphs is obtained as follows:

Aiu =


1, if xu ∈ Sel-kNN(xi)

1, if Siu < ε and yi = yu

0, otherwise.
(8)

III. EXPERIMENTS

In this section we present experimental results to evaluate
the graph construction methods under study. Sub-sect. III-A
and III-B discuss respectively results obtained in artificial and
real-world data sets. Sub-sect. III-C describes the application
of the methods in the detection of invariant patterns in images.

A. Artificial Data Sets

In the following, we present an analysis of the graph
construction methods in three artificial data sets with distinct
levels of noise which are shown by Fig. 1.

(a) TM-10 (b) TM-25 (c) TM-50

Fig. 1: Artificial data sets generated with distinct level of
mixture between the classes. (a) 10%; (b) 25% and (c) 50%.

In the experiments, the predictive performance of each
method is averaged over a 10-fold stratified cross-validation.
The parameters are defined as follows: the number of neigh-
bors k ∈ {1, 2, . . . , 20}; the radius ε ∈ {0.2d̄, 0.4d̄, . . . , 1d̄},
where d̄ denotes the average distance among objects in the
training data set; and the γ ∈ {0, 2−4, 2−3, . . . , 23}, which is
defined by Eq. (3).

Fig. 2 presents the results of the parameter analysis. Each
subfigure presents the averaged accuracy (axis z) obtained by
a given method in a given data set; axes x and y denote

(a) TM-10: kNNG (b) TM-25: kNNG

(c) TM-50: kNNG (d) TM-50: Sel-kNNG

(e) TM-10: kNN+εNG (f) TM-25: kNN+εNG

(g) TM-50: kNN+εNG (h) TM-50: Sel-kNN+εNG

Fig. 2: Analysis of the graph construction methods in function
of the parameters.

respectively the parameters of PGR and of the graph construc-
tion method under evaluation. As the general performance of
kNNG and Sel-kNNG are similar for data sets with TM-10
and TM-25, we show the results of only one of them (the
same with kNN+εNG and Sel-kNN+εNG). One can see in the
figure that the γ parameter has an important role as the noise
data increase. Table I shows the best results obtained for each
method in each data set. By the table, one can see that kNNG
seems slightly more robust to noise than Sel-kNNG. This also
has some evidence by analyzing the networks provided by
each method, such as shown by Fig. 3: while kNNG has some
isolated vertices (maybe noise data), Sel-kNN+εNG forms



only connected components.

TABLE I: Best averaged accuracy obtained by PGR using each
graph construction method.

Data kNNG kNN+εNG Sel-kNNG Sel-kNN+εNG

TM-10 100.0 100.0 100.0 100.0
TM-25 92.5 92.5 92.5 92.0
TM-50 84.0 84.0 82.0 83.5

(a) TM-50: kNNG (b) TM-50: Sel-kNN+εNG

Fig. 3: Analysis of the graphs generated by distinct graph
construction methods in the artificial data sets.

B. Real-world Data Sets

We also conducted simulations on real-world data sets
available in the UCI repository [25]. Table II provides details
about each data set. As one can see, the selection was made
to encompass diversity of domains, features and classes. As a
data preparation, each instance attribute vector was normalized
by the l2-norm and the Euclidean distance was used in all
simulations as the distance measurement.

TABLE II: Description of the data sets in terms of the number
of data items (#Obj.), attributes (#Attr.) and classes (#Classes).

Name #Obj. #Attr. #Classes

Iris 150 4 3
Teaching 151 5 3

Glass 214 9 6
Libras 360 91 15

In our study, the predictive performance of the methods is
averaged over a repeated stratified cross-validation that aver-
ages three runs of 10-fold stratified cross-validation, taking the
folds randomly each time. The parameters of each technique
(presented in Sub-sect. III-A) are selected through the grid
search method by doing a 3-fold stratified cross-validation on
each training partition (nested cross-validation).

Table III shows the results obtained by each method in
terms of averaged accuracy. It also includes as baseline the
results of the 1-nearest neighbor classifier (1NN). Both kNNG
and Sel-kNN+εNG performed better in two data sets. In

order to better understand such results, we analyze some
of the obtained graphs. Figure 4 presents a graph obtained
by kNNG in the Libras data set and a graph obtained by
Sel-kNN+εNG in the Glass data. Despite both graphs have
particular structures, again the network provided by kNNG has
a set of isolated vertices (maybe noise data). By contrast, the
Sel-kNN+εNG presents only connected components, which
allows the representation of strong and well-defined patterns,
although it can also suffer with noise data.

TABLE III: Predictive results obtained by each graph con-
struction method in PGR. 1NN provides baseline results.

Data kNNG kNN+εNG Sel-kNNG Sel-kNN+ 1NN
εNG

Iris 97.3 ± 4.1 97.3 ± 4.1 96.7 ± 4.1 97.6 ± 3.2 97.6 ± 3.6
Teach. 60.9 ± 10. 58.2 ± 12. 60.0 ± 13. 58.0 ± 15. 39.7 ± 11.
Glass 71.4 ± 8.5 72.1 ± 7.7 71.2 ± 8.4 72.1 ± 7.9 67.9 ± 8.4
Libras 85.3 ± 5.4 84.8 ± 5.8 84.7 ± 5.2 84.3 ± 6.1 75.6 ± 5.2

(a) Libras: kNNG

(b) Glass: Sel-kNN+εNG

Fig. 4: Analysis of the graphs generated by distinct graph
construction methods in the real-world data sets. Each color
denotes a class label.



C. Invariant Object Recognition
In the following the graph construction methods are eval-

uated in the invariant object recognition problem. Instead of
using the Euclidean distance, here the discrete Bhattacharyya
coefficient is employed to compute the similarities between
images as it is widely used in image processing tasks.

The data sets are from the ETH-80 collection [26], which
comprises a total of 3280 images divided in 8 categories:
Apple, Car, Cow, Cup, Dog, Horse, Pear and Tomato, as shown
by Fig. 5. Each category contains 10 objects that span large
in-class variations while still clearly belonging to the category.
For each object, there are 41 images from viewpoints spaced
equally over the upper viewing hemisphere (at distances from
22.5o to 26.0o). For instance, Fig. 6 shows the 41 images
of two apples objects from Apple category. To be specific,
the data preprocessing consisted of the following steps: the
images were down-sampled from 128×128 (original size) to
32×32 to speed up processing; a total of 512 features were
extracted for each image by calculating its histogram; and the
similarities among the images’ histograms are calculated by
the Bhattacharyya coefficient.

Fig. 5: The eighty objects of the ETH-80 collection.

The predictive performance of the methods is averaged over
a repeated stratified cross-validation that averages three runs
of 10-fold stratified cross-validation, taking the folds randomly
each time. About the parameters of the methods (presented
in Sub-sect. III-A), they are selected through the grid search
method by doing a 3-fold stratified cross-validation on each
training partition (nested cross-validation).

Table IV shows the predictive results obtained by PGR for
each graph construction method. One can see in the table that
the Selective kNN graph has better performance in these data
sets than the conventional kNN graph. By analyzing some of
the obtained graphs, such as those shown by Fig. 7, we have
some evidences that ETH-80 data sets are characterized by
strong patterns and low level of noises, which seems to be a
favorable scenario to the Selective-kNN method.

(a) Apple category - Object 2 (b) Apple category - Object 7

Fig. 6: Two objects of the Apple category in ETH-80
collection.

TABLE IV: Predictive results obtained by each graph con-
struction method in PGR. 1NN provides baseline results.

Data kNNG kNN+εNG Sel-kNNG Sel-kNN+ 1NN
εNG

Apple 90.2 ± 4.3 90.2 ± 5.1 90.4 ± 4.7 90.4 ± 4.7 86.2 ± 4.9
Car 94.9 ± 3.6 95.0 ± 3.6 95.3 ± 4.1 95.3 ± 4.1 90.1 ± 4.1
Cow 73.6 ± 6.2 73.4 ± 6.9 72.3 ± 8.6 72.9 ± 9.0 66.8 ± 5.9
Cup 94.9 ± 3.9 95.4 ± 2.9 95.6 ± 3.4 95.5 ± 3.5 89.8 ± 4.1
Dog 91.2 ± 3.6 91.9 ± 2.7 91.5 ± 3.2 91.9 ± 3.1 84.9 ± 6.3
Horse 90.1 ± 3.5 91.0 ± 2.8 90.7 ± 3.7 90.5 ± 3.7 81.2 ± 6.8
Pear 80.2 ± 4.6 80.2 ± 3.6 81.1 ± 3.4 80.8 ± 3.3 74.7 ± 6.5
Tomat. 93.3 ± 3.8 93.7 ± 5.0 94.0 ± 3.4 94.0 ± 3.4 89.9 ± 4.8

IV. CONCLUSIONS

In this paper is presented a preliminary study which ad-
dresses the problem of graph construction in supervised learn-
ing. In a few words, four graph construction methods based on
k-nearest neighbors and ε-radius neighborhood criteria were
modeled and eqquiped with the recently proposed importance-
based classification technique. Experiments were performed
considering artificial and real-world data sets. The results
obtained show that the inherent structure of the k-nearest
neighbors graph makes the method more robust against noises
in comparison with other methods evaluated. On the other
hand, the combination of the ε neighborhood graph with the
Selective kNN graph seems interesting to data sets with well-
defined and strong patterns.

For sake of space, we reduced the amount of variables
in this study to four graph construction methods. However,
future works should include the comparison with other graph
construction methods in literature as well as the analysis
of additional variables, such as the proximity measure, the
supervised technique, etc. Future works also include the design
of a benchmark data set able to characterize desired properties
related to complex networks in graph-based learning.
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(a) Car: Sel-kNN+εNG (b) Cow: kNNG

Fig. 7: Analysis of the graphs generated by distinct graph construction methods in data sets from the ETH-80 collection.
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