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Abstract—Community detection is a kind of clustering task
which aims to find groups of vertices densely connected internally
but sparsely connected to other groups. In comparison with con-
ventional clustering methods, community detection methods are
able to examine structural, functional and dynamical properties
of the networked data, beyond its physical attributes. However,
such techniques have been barely explored in the literature
as most of the machine learning data sets are represented
as non-graph data (e.g., feature vectors, images, texts, and so
on). In this work, we propose a simple community detection
framework based on the literature that covers since the graph
construction process from feature vectors generated from non-
graph data until the application and evaluation of community
detection methods over such a graph. The framework is further
evaluated on the problem of invariant pattern clustering of
images, which consists of given a set of image objects taken
from different angles, positions or rotations, clustering the images
related to each object. Experiments were conducted considering
three community detection methods (fast greedy, walk-trap and
label propagation) and two relevant clustering methods (k-means
and HDBSCAN). The results indicate FG as the better choice
among those algorithms as it usually approximates efficiently
the ground-truth groups while also keeping a reasonable number
of communities. Moreover, our results suggest that community
detection may be an efficient task not only to cluster graph data,
but also domain applications represented by non-graph data.

Index Terms—complex networks, community detection, clus-
tering, invariant pattern, graph-based learning.

I. INTRODUCTION

Clustering is a common machine learning task which
aims to find groups of data items characterized by some
(dis)similarity criterion. Such a task contribute to the process
of knowledge discovery in data through of several exploratory
analysis related to decision making, data mining, information
retrieval and pattern analysis, just to name a few [1]. Formally,
the clustering task can be defined as follows: given a data
set X = {x1, . . . , xn}, with xi = {f1, . . . , fd} denoting a
d-dimensional vector, where each of the entries is called a
feature, the objective is to find subgroups of data items, i.e.,
C = {c1, c2, . . . , ck}, such that the members of the same
subgroup are more similar than members of different groups.

Community detection is a particular case of clustering
which is related to networked data. Communities represent the
organization of vertices in clusters, which can be identified by
the existence of many edges connecting intra-clusters vertices
and few edges connecting inter-clusters vertices. They may

represent (or uncover) vertices that probably play functions
or have similar behaviors, as they examine not only the
physical attributes of the data (e.g., distance or similarity),
but also the topological ones. Formally, consider a graph
G = {V, E}, where V = {v1, . . . , vn} is the set of vertices
and E = {e1, . . . , eL} ⊂ V × V denotes the set of edges,
the objective is to identify communities (C), i.e., subgroups
of vertices densely intra-connected but sparsely connected to
other groups.

Although community detection methods have presented suc-
cessful results in a wide range of problems [2], the application
of such methods is also very limited to graph data, which
means that the topic has been barely explored for other very
common kinds of data representation in machine learning,
such as feature vectors, images and texts. To the best of our
knowledge, the most related work to ours are presented in
[3]–[5], in which community detection algorithms were inves-
tigated on data sets represented as feature vectors. Regarding
other data representation, [6] presented a framework for image
segmentation, which is based in super-pixels and employs the
fast greedy algorithm [7] for community detection.

In this paper, we make a contribution in that sense, by
modeling a simple framework to apply and evaluate commu-
nity detection methods for non-graph data. To be specific, we
analyze the proposed framework on the real-world problem
of invariant pattern clustering from images. Such a problem
consists of given a set of image objects captured from different
angles, positions or rotations, have algorithms capable of
clustering the images related to each object.

The remainder of this work is organized as follows: Sect.
II describes the proposed model; Sect. III presents the experi-
mental results, respectively; and Sect. IV concludes the paper.

II. MODEL DESCRIPTION

In the following, we describe in detail the framework
proposed in this paper. In a few words, it consists of the
following steps:

1) Obtain the data set X after preparing and pre-processing
the raw data;

2) Build up an undirected graph G from the data set X;
3) Apply a community detection method over G to obtain

the set of communities C;
4) Evaluation of C in terms of well-known metrics.



A. Data Preparation and Pre-Processing

As a data preparation we extract attributes from the non-
graph data in order to build up the graph in the next step. After
the raw data is converted to feature vectors, we apply some
domain-driven pre-processing methods in order to obtain our
data set X. In case of the data is already available as feature
vectors, we focus on the pre-processing (if necessary).

B. Graph Construction

In this step, a graph construction method g(.) is applied over
the feature vectors data set, X, to obtain an undirected graph G,
i.e., g(X) → G. The k-nearest neighbors graph (kNN-graph)
[2], [8] has been defined as g(.) in this paper. Let D be a
distance (or similarity) matrix, δ be a vector-based distance
function (e.g., Euclidean distance) such that Dij = δ(xi, xj),
and Λi denote the set of k-nearest neighbors of xi in terms of
D, the adjacency matrix A of a kNN-graph is given by:

Aij =

{
1, if xj ∈ Λi

0, otherwise.
(1)

As A may no be symmetric, we make the graph undirected by
applying the following post-processing: A = max(A,AT ).

C. Community Detection Algorithms

Here we present a brief description about the three commu-
nity detection algorithms investigated in our framework.

1) Fast greedy: FG defines communities based on the
greedy optimization of modularity [7], [9]. Given a graph
G = {V, E}, the algorithm starts by associating each vertex
vi ∈ V to an isolated community ci ∈ C. At each step, FG
merges the two communities, i.e., cu = {ci ∪ cj}, which
the union maximize the modularity Q. The algorithm repeat
this step until all vertices belongs to a unique community. A
dendrogram is generated summarying all merging steps and a
cut is made in the division which provides the highest value
of Q. The time complexity of FG lies on O(E + V log2 V).

2) Walk-trap: WT is based on random walk theory and its
basic idea is that objects that meet more frequently (adjacent)
in a short random walk probably belong to the same commu-
nity [10]. At the beginning, each vertex belongs to an isolated
community. In the following, the distances between all adja-

cent vertices are calculated by ri,j(t) =
√∑n

q=1

(P t
iq−P t

jq)
2

d(q) ,
where P t

iq is the probability of move from vi to vq through of
a random walk of size t and d(q) is the degree of the vertex q.
WT then basically iterates the following steps: i) choose two
communities ci and cj in Pq based on distance criterion be-

tween communities, i.e., rci,cj (t) =

√∑n
q=1

(P t
ciq

−P t
cjq

)2

d(q) ; ii)
join these communities in a new community, i.e., cu = ci∪cj ,
and create the new partition Pq+1 = (Pq{ci, cj})∪ {cu}; and
iii) update the distance between communities until all vertices
are in the same partition. The algorithm has time complexity
of O(V2 logV).

3) Label propagation (LP): Given a graph G = {V, E},
LP starts by associating each vertex vi ∈ V to an isolated
community ci ∈ C. At each step, the vertices are treated
randomly and the labels are propagated on the graph according
to the predominant label in their neighborhood [11]. Let
L = {l1, . . . , lp} be the labels in the current step and d

lj
i

the number of neighbors of vi with label lj , LP associates
vi to the label lj if dlji ≥ dlzi , with z denoting every label
associated to the set of L - lj labels. Because tie cases are
solved randomly, each execution of the algorithm can return a
different result. The time complexity of LP lies on O(V + E).

D. Evaluation Metrics

In order to evaluate the generated communities, we consider
both internal and external validation indexes. As we have the
ground-truth groups of ETH-80 data, we have given more
attention to the external ones in our analyses.

1) Internal index: Given a network partitioned in m com-
munities, a matrix Em×m which the elements, denoted by
εij , represent the fraction of the network edges that connect
vertices between two communities i and j, the modularity is
given by:

Q =
∑
i

[εii − (
∑
j

εij)
2] = Tr(E)− ‖E2‖ , (2)

where Tr(E) is the matrix trace and ‖E2‖ the sum of all
elements.

2) External indexes: This category includes Normalized
Mutual Information (NMI), Purity (Pu), Collocation (Co) and
F1. Let C = {c1, c2, . . . , cm1} denotes the communities (or
clusters) obtained by a given community detection algorithm
f(.) and Y = {y1, y2, . . . , ym2} the ground-truth groups, with
m1 and m2 denoting respectively the number of communities
obtained and the number of ground-truth groups. In the
following, we formally define the indexes adopted here.

• Normalized Mutual Information (NMI) is a metric from
information theory [12], which is defined by:

NMI(C, Y ) =
I(C, Y )

[H(C) +H(Y )]/2
, (3)

where I denotes the mutual information, which tells us
how much we have learned about C if we know Y , and
H the entropy.

• Purity (Pu) provides the percentage of the majority
ground-truth group in each community. Given a ground-
truth group yi ∈ Y , a community cj ∈ C, and m1
(the number of generated communities), the purity can
be defined as:

Pu(C, Y ) =
1

n

m1∑
j=1

maxi(yi ∩ cj) , (4)

where n denotes the number of instances.
• Collocation (Co), or Inverse Purity, calculates, for each

ground-truth group, the percentage of the community with
the largest number of instances for that group [13]. Given



a ground-truth group yi ∈ Y , a community cj ∈ C, and
m2 (the number of ground-truth groups), the collocation
can be defined as:

Co(C, Y ) =
1

n

m2∑
i=1

maxj(yi ∩ cj) . (5)

• F1 calculates the harmonic mean between purity (Pu) and
collocation (Co) and it is given by:

F1 =
2 · Co · Pu
Co+ Pu

. (6)

Despite purity penalizes instances of different ground-
truth groups in the same community, it does not reward
objects of the same ground-truth group clustered in the
same community, i.e., it can be maximum when each
object belongs to an isolated community. By the contrary,
collocation rewards objects of the same ground-truth
group that are clustered together but not penalize when
two or more ground-truth groups are mixed, i.e., it can
be maximum when all objects are in the same cluster.
Therefore, F1 tries to maximize together both purity and
collocation aiming at evaluate better those clusterings that
provide pure communities but also with a reduced number
of such communities, which certainly aid data analysis in
the post-processing [14].

III. COMPUTER SIMULATIONS

In this paper we consider the task of invariant pattern
clustering and evaluate our study over the data sets of ETH-80
collection [15], in which each raw data item is represented by
an image. To be specific, we aim at evaluating our community
detection framework in function of three algorithms: fast
greedy (FG), walk-trap (WT) and label propagation (LP), and
considering a set of evaluation metrics presented before. We
also compare the results of our framework against robust
clustering methods, like HDBSCAN. For sake of clarity, we
divide this section in five parts: data preparation, experimental
setup, framework results, visualization analysis, and compari-
son against other clustering methods.

A. Data Preparation

The task of invariant pattern clustering in images consists
of given a set of images objects taken at different angles,
positions or rotations, have algorithms capable of clustering
the images related to each object. To evaluate our community
detection framework, we selected the ETH-80 data collection
[15]. The raw data collection is represented by 3280 images
divided into 8 categories: Apple, Pear, Tomato, Cow, Dog,
Horse, Cup and Car. Each category contains 10 objects with
great variation among them, even though they clearly belong
to the same category. Each object has 41 images to represent it
in different rotation, translation and scaling conditions. Figure
1 show examples of the 10 objects of each category.

As a data preparation step, we resize each image from
128x128 to 32x32 pixels (to improve computational per-
formance) and then extract its attributes by calculating its

Fig. 1: Example of the categories of ETH-80 data base. Each
category has 10 distinct objects.

RGB histograms over 8 bins each one. Thus every image is
converted to a feature vector with 512 numeric attributes [16].
As all images lie on the same scale, we do not apply any
pre-processing method here.

B. Experimental Setup

We evaluate our framework over eight data sets, each one
denoting a ETH-80 category. After the transformation of the
images to feature vectors, we generate the kNN-graph for
such data sets. Thus, each image is mapped as a vertex into
an underlying network. In such a step, we have fixed the
Bhattacharyya distance as the vector-based distance metric and
ranged the parameter k from {1, 2, . . . , 30} in order to provide
distinct topological configurations of the networked data.

Regarding the community detection methods, they were
executed with their default parameters. For LP, which is a
stochastic method, we repeated the simulation 10 times and
returned the averaged results. The analysis of the results
follows the evaluation metrics defined before.

C. Community Detection Results

1) Number of Communities: Our first analysis refers to the
number of communities obtained by each algorithm for the
categories Apple and Cow, which is presented in Fig. 2. In
the figure, the x axis denotes the variation of the parameter k
in the graph construction step and the y axis the value obtained
in terms of number of communities. As can be observed,
the algorithms present relatively close values, especially when
k increases. In general, the FG algorithm usually has fewer
communities than the other algorithms, we believe that this
is due to the fact that FG is based on a greedy approach to
optimization of modularity, which joins the nodes until all
are part of the same community. For sake of clarity, such an
analysis repeats for the other six categories, but their graphics
were omitted for reason of space.

2) Modularity: Here we analyze the community detection
methods in terms of the modularity, as shown by Fig. 3. One
can see that modularity decreases as k increases. In that case,



(a) Apple (b) Cow

Fig. 2: Number of communities (group) found by FG, WT and
LP for some data sets: (a) Apple; and (b) Cow.

FG also tends to more distant from WT and LP. We also
observe that sparse knn-graphs (smaller k values) present high
modularity which is compliant with the modularity formula-
tion in terms of random graphs. Overall, the literature says
that modularity values greater than 0.5 indicates the existence
of well-defined groups [7].

(a) Car (b) Pear

Fig. 3: Modularity obtained by FG, WT and LP for some data
sets: (a) Car; and (b) Pear.

3) Normalized Mutual Information - NMI: Fig. 4 shows the
NMI obtained by each community detection method. One can
see that NMI is higher for smaller values of k. This is because
NMI penalizes clusters that are not pure, once the number of
clusters decreases as k increases and there are possibly more
instances from distinct ground-truth groups in the same cluster.
Such characteristic of NMI reflects its tendency in choosing
clustering solutions with more communities [17], which is not
usually desired. Indeed we are looking for clusterings that
maximize purity and minimize the number of communities
at the same time.

Fig. 4 also shows that FG can be sensitive to the variation of
k in some data sets. As it usually provides less communities,
k may have high influence in the purity of such clusters.

4) Purity Pu: The purity of the obtained communities is
presented by Fig. 5. As expected, the purity values decrease
as k increases, which means that purity is higher for isolated
or small clusters. LP achieved the best performance here.

5) Collocation Co: Fig. 6 shows the collocation results
obtained by FG, WT and LP. Unlike the purity metric, col-
location values increase as k increases, which means that we
are looking for a small number of clusters. FG achieved the
best results here.

6) F1: The results in terms of F1 are presented in Fig.
7. One can see that FG and WT achieved the best results,

(a) Apple (b) Car

(c) Cow (d) Cup

Fig. 4: Normalized Mutual Information (NMI) for the data
bases (a) Apple, (b) Car, (c) Cow and (d) Cup.

(a) Apple (b) Cow

(c) Car (d) Cup

Fig. 5: Purity for the data bases (a) Apple, (b) Car, (c) Cow
and (d) Cup.

although LP seems to be more consistent regarding to the
parameter variation. The harmonic mean between purity and
collocation is coherent with we are looking for: high purity
and small number of clusters. Therefore, it has been taken as
the reference metric for the further analysis we present next.

D. Visualization Analysis

Now we move on to provide a qualitative analysis about
the community detection algorithms investigated in our frame-
work. Figure 8 presents the graph, communities and ground-
truth groups for FG, WT and LP considering their best results
on the Car data set. We have adopted the Kamada-Kawai
layout [18] to generate the graphs. For LP, which is a stochastic
method, we have considered the results obtained in its first
execution. In the figure, communities are denoted by semi-



(a) Apple (b) Car

(c) Cow (d) Cup

Fig. 6: Collocation for the data bases (a) Apple, (b) Car, (c)
Cow and (d) Cup.

(a) Apple (b) Car

(c) Cow (d) Cup

Fig. 7: Harmonic Mean for the data bases (a) Apple, (b) Car,
(c) Cow and (d) Cup.

transparent markers while ground-truth groups by individual
colored vertices. Despite the number of communities is similar,
the communities configurations are different. LP has the
smallest number of communities, although they do not have
the same purity as the communities found by FG and WT. By
the contrary, the differences between FG and WT communities
are little and lies on the number of communities. By analyzing
the communities denoted by “A”, “B” and “C” in the figure,
one can see that FG is able to keep the purity similar to WT,
but with less communities.

E. Comparison against conventional clustering methods

Now we move on to compare the community detection
methods against other clustering algorithms. To be specific, we
consider two traditional algorithms: the widely used k-means

[19] and the robust HDBSCAN [20], [21]. In k-means, the
parameter K denotes the number of clusters to be obtained by
the algorithm; HDBSCAN has a parameter min clust which
defines the smallest size of a group in order to be considered
as a cluster and the parameter min samples which is respon-
sible by taking a more or less conservative strategy in relation
to noises and outliers. Regarding the parameter selection, k-
means is optimized over the set K ∈ {2, 4, . . . , 100}; and
HDBSCAN over the set min clust ∈ {2, 4, . . . , 30}, with
min samples = 1 defined empirically.

Table I shows the best F1 value obtained by each one of the
techniques under comparison. One can see that FG obtained
the best results for seven data sets. The main advantage of
FG seems to be able to found coherent groups while also
keeping the number of clusters smaller than other techniques,
which is a desired aspect to be considered in this study.
Otherwise, k-means and HDBSCAN have troubles to cluster
the invariant objects in their corresponding groups using a
reasonable number of groups. We suspect that the community
concept is less dependant of the physical features of the data
(e.g., spatial distribution) as it also analyzes their topological
features (e.g., structural distribution).

TABLE I: Comparison (in terms of F1) among community
detection and conventional methods over the clustering task
of invariant object recognition in ETH-80 collection.

Community Detection Clustering Methods

Category FG WT LP k-means HDBSCAN

Apple 63,4 61,6 62,3 50,4 58,8
Car 59,1 56,2 49,6 38,0 36,3
Cow 43,5 41,9 39,6 29,0 30,7
Cup 54,4 53,0 48,2 47,5 49,1
Dog 46,5 47,2 42,8 40,3 39,2
Horse 43,1 42,9 40,9 38,3 39,2
Pear 42,7 41,0 38,5 32,8 32,5
Tomato 43,5 41,7 39,2 41,9 43,4

IV. CONCLUSIONS

In this work we model a simple framework to extend the
application of community detection techniques to non-graph
data. Although most of machine learning data is available as
feature vectors, the usage of graphs can provide a different
kind of data analysis which not only considers its physical
attributes but also is able to take into account the topological
ones. The salient features of such a representation have been
enhanced by the development of complex networks tools able
to uncover data insights through of the analysis of structural,
functional and dynamics properties of the networked data. The
framework consists of four steps: i) feature extraction from
the raw data, ii) graph construction from the feature vectors
previously generated, iii) detection of communities (or groups)
in such a graph, and iv) the calculation of evaluation metrics
based on literature. To be specific, three community detection
algorithms have been adopted in the framework: fast greedy,
walk-trap and label propagation .



(a) FG (b) WT (c) LP

Fig. 8: Communities and ground-truth groups found by FG, WT and LP for the Car data set.

In order to analyze the performance of such an approach, we
consider the task of invariant pattern clustering over eight data
sets here. A wide range of computer simulations have been
conducted in terms of internal and external indexes, such as
number of communities, modularity, NMI, purity, collocation
and F1. Besides the comparisons among FG, WT and LP, we
also compared such methods against conventional clustering
methods, like k-means and HDBSCAN. Interestingly, our
results indicates FG as the better choice among all evaluated
algorithms. FG usually approximates efficiently the ground-
truth groups while also keeping a reasonable number of
communities. We believe that such a result can be explained
due to the graph structure that provides a robust representation
for the community concept, which is much less dependant of
the physical features of the data (e.g., spatial distribution).
Such a salient feature makes community detection methods
promising methods not only to cluster data already represented
as graph, but also data represented by feature vectors.

Future works should focus on extending the framework
analysis by considering other graph construction and commu-
nity detection methods as well as new application domains.
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