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Abstract—Multi-label learning aims to solve problems in which
data items can have multiple class labels assigned simultaneously,
e.g., text categorization, image annotation, medical diagnosis, etc.
However, as most of multi-label techniques are derived from
the single-label ones, existing techniques perform the multi-label
classification only based on the physical features of the data
(e.g., distance, similarity or distribution), ignoring the semantic
meaning of the data, such as the formation pattern. Inspired
by recent advances in the use of complex networks for single-
label learning, this exploratory work aims to investigate a multi-
label solution able to combine existing multi-label classifiers
with a high-level classifier based on complex networks measures,
aiming to present a new concept of multi-label classification
that, besides the physical attributes, also analyzes the topological
structure of the data. Experimental results considering both
artificial and real-world data sets emphasize respectively the
salient features of our technique in comparison to the traditional
ones and its potential to improve the predictive performance
of those techniques, especially in data sets characterized by
higher cardinality and density of labels, which often denote more
difficult scenarios to multi-label learning.

Index Terms—Multi-Label Learning, High-Level Classifica-
tion, Complex Networks, Machine Learning, Complex Network
Measures.

I. INTRODUCTION

Supervised learning is one of the main machine learning
paradigms, in which data items (or objects) are denoted beyond
a set of features, by known information referred as label (or
class). The most common supervised learning task is data
classification, which aims to learn a function from previously
labeled objects in order to predict the label of each new
(unknown) object. An example of data classification is the
spam detection problem, where each known data item (email)
is denoted by a set of features (e.g., sender, subject, words
in the email, etc) and a single label (spam or not spam).
This way, conventional data classification assumes that each
object can be associated with only one class. However, such
an assumption does not hold for problems in which the objects
can have simultaneously multiple labels [1]. For example: in
sentiment classification, the same tweet can represent multiple
sentiments, such as worry, surprise and fear [2]; in text
categorization, a newspaper article can be tagged as People
and Economics [3]; and in image annotation, one image
can be tagged with a set of multiple words indicating its
contents, such as airplane, sky and grass [4]. Such problems

are addressed by the multi-label learning task which assumes
that objects can belong to one or more classes.

Multi-label classification has attracted a lot of attention
in recent years as it is a very challenging task from both
theoretical and practical perspectives. From the theoretical
viewpoint, the overwhelming size of output space which grows
exponentially as the number of class labels increases makes the
learning task much more difficult to solve than conventional
classification. From the practical one, the increasing range
of complex applications makes the multi-label techniques
prominent tools to deal with such problems.

Multi-label techniques can be divided in two major ap-
proaches: problem transformation and problem adaptation,
with the former aiming to fit data to algorithm and the latter
to fit algorithm to data [1].

The most common approach to deal with multi-label clas-
sification problems transforms it into another well-established
learning scenarios [1]. After that, any conventional classifi-
cation technique can be used, e.g., Support Vector Machines
(SVM), Naive Bayes (NB), etc. Examples of techniques that
adopt such an approach include Binary Relevance (BR) [5] and
Classifier Chain (CC) [6]. BR is the most popular algorithm
for multi-label learning and works by transforming the multi-
label problem into independent binary classification problems,
where each one of them corresponds to a possible label in
the label space. The CC in turn, transform the multi-label
problem into a chain of binary classification problems, where
subsequent binary classifiers in the chain are built upon the
predictions of preceding ones.

Alternatively, some works in literature also adapted con-
ventional learning algorithms to treat the multi-label problem
directly. One of the most representative algorithms in this
category is Multi-Label k-Nearest Neighbor (ML-kNN) [7],
which is an adaptation of lazy learning techniques. The basic
idea is to adapt the kNN to handle the multi-label problem. In
addition, it also employs Bayesian inference to select assigned
labels. Other adapted algorithms include Ranking Support
Vector Machines (Rank-SVM) [8] and Collective Multi-Label
classifier (CML) [9].

Another categorization of multi-label algorithms takes into
account the exploitation of correlations (or dependency)
among labels [1]. In this way, the algorithms can be roughly
categorized in first-order, second-order and high-order strate-



gies. Algorithms of first-order, such as BR and ML-kNN,
decomposes the multi-label problems into independent binary
classification problems, ignoring any correlation among labels.
Algorithms of second-order, such as Rank-SVM and CML,
considers co-occurrence of labels by considering pairwise
relations between them (e.g., ranking labels in terms of rele-
vance) or by analyzing the interaction between pairs of labels.
Algorithms of high-order, such as CC, considers relations
among labels such as taking labels’ influences on each label or
also addressing connections among random subsets of labels.

Despite the great advance in the last years, a drawback
which has been barely investigated is that most of the multi-
label learning techniques performs classification considering
only the physical features of the input data (e.g., similarity,
distance or distribution). This happens because these tech-
niques are designed essentially from the traditional single-
label classification ones. Although some of them are also
able to analyze dependencies among the labels, this does
not necessarily contribute to the detection of the semantic
meaning of the data patterns as they are often inherently
represented into complex relationships among the features.
Figure 1 denotes a misleading problem for most of the current
multi-label techniques, which are unable to detect both the
straight line (Green/◦ markers) and the kind of spherical
shape (Red/4) patterns. Indeed, as we have shown in our
experiments, they are more propense to classify each test
item (denoted as Black/� markers) only in the Red/4 class,
completely ignoring the straight line pattern.

Fig. 1: A toy data set which emphasizes the drawbacks of
current multi-label techniques and also the salient features of
our technique.

Indeed, the difficult of most traditional classification tech-
niques in the detection of high level patterns (e.g., formation
pattern) has been pointed out and discussed by recent works
in literature [10]–[15], which have designed techniques able
to consider both physical and topological features of the input
data in order to overcome such a problem. In common, all
these techniques convert vector-based data into a network
in order to exploit properties from complex network theory.
For example, [10] proposed a high-level framework which
combines the associations produced by low-level and high-

level techniques. The low-level, which can be any traditional
technique (e.g., SVM, NB, kNN, decision tree, etc), captures
physical features of the data. The high-level, which is given by
a classifier via complex network measures, captures topologi-
cal features of the data by verifying its pattern conformation.
In a few words, an unknown object is inserted into the network
components (each one denoting a class label) and is classified
in the class which the network structure suffers the smallest
variation after its insertion. Such a framework has been one
of the main inspirations for our work.

Motivated by those recent works for single-label classifica-
tion, this paper aims to model a high-level technique able to
combine associations produced by existing multi-label classi-
fication algorithms with those produced by complex network
measures in order to consider besides the physical attributes,
the topological structure of the data in the multi-label learning
context. Thus, our hypothesis states that such a technique
can improve the predictive performance of widely used multi-
label algorithms. In order to test this, we selected relevant
techniques of each one of the multi-label categorizations
discussed before, namely BR (problem transformation and
first-order), ML-kNN (problem adaptation and first-order) and
CC (problem transformation and high-order). To evaluate our
work, experiments have been conducted on artificial and real-
world data sets, which confirmed the limitations we pointed
out about current multi-label learning as well as revealed a
promising scenario to continue our investigation about high-
level multi-label learning.

The remainder of this paper is organized as follows. Section
II presents a formal definition of the problem as well as a
detailed description about the proposed technique. Section III
presents results on a illustrative data set which also serve as
a motivation for our work. In Section IV we describe the
experiments performed, discuss the results of the techniques
under comparison and also the analysis about the parameters
influence. Finally, Section V concludes the paper.

II. MODEL DESCRIPTION

In both single-label and multi-label learning, most of the
existing algorithms perform classification considering only the
physical attributes of the data, ignoring the semantic meaning
of the data, such as the formation pattern. By the contrary,
it has been shown in the single-label learning literature that
one way to capture such a semantic meaning is through of
the usage of complex network models [10], [13], [14]. Based
on the high-level single-label technique presented in [10], we
propose in this paper a high-level technique able to perform
multi-label learning. To the best of our knowledge, this is the
first attempt to address such a task by using complex networks.
Thus, the basic idea here is to combine associations produced
by existing multi-label techniques with those provided by a
high-level technique based on network measures in a way that
the resulting multi-label learning technique is able to consider
not only the physical attributes, but also the data topological
structure.



The multi-label classification problem addressed here can
be divided in two phases: training and test. In the training
phase, the proposed algorithm receives as input a given
training set denoted by X = {(x1,y1), . . . , (xn,yn)}, where
each data item is represented by the tuple (xi,yi), with
xi = {x1, . . . , xd} denoting a d-dimensional vector of features
and yi = {y(1)i , . . . , y

(L)
i } the output domain of possible labels

L = {1, . . . , L} in which a given class label l can be assigned
(if y(l)i = 1) or not (if y(l)i = 0) to xi. The objective here is
to learn a multi-label classifier function f : X → 2L. In the
test phase, the multi-label classifier f(·) is used to predict the
labels of new test items (x, ?), such that f(x) ⊆ L.

Regarding the proposed technique, the training phase has
two major steps which are the construction of a graph for
each class label from the input data X and the calculation
of the network measures for each one of the graphs. In the
test phase, three major steps are followed: each test item is
virtually inserted into the graphs to recalculate the network
measures in order to obtain their variations; such variations
are then employed to produce the classification probabilities
of the test item for each class; and such probabilities are
after combined with the classification probabilities provided
by traditional multi-label techniques. In the next sections we
present a detailed description about each one of these phases
in our technique.

A. Training Phase

In the training phase, our proposed technique has two major
phases which are the graph construction and the calculation
of the complex network measures, which are described in the
following.

1) Graph Construction: In order to exploit topological
properties of the data, they must be represented as a network.
Despite most data sets are available in the format of vector
of attributes, the literature contains some methods to build up
graphs from such a kind of data. The most popular techniques
are variants of the nearest neighbor approach, such as the
k-nearest neighbor graph which connects a given node to
its k nearest neighbors and the ε-neighborhood graph which
connects a given node to all other nodes that distances are
less than a predefined value ε [16]. Another approach is the
b-matching method that removes edges of the graph in such a
way that all vertices have the same degree [17], [18] or yet the
usage of particle swarm optimization to build up an optimized
graph regarding a given learning task [15].

Different from related works applied to the single-label
classification [10], [13], where a unique graph is generated and
classes are denoted by network components, our formulation
provides a set of graphs G = {G(1), . . . ,G(L)} in order to
model an inductive multi-label learning setting . Formally, for
each label l ∈ L is associated a graph G(l) = {V(l), E(l)},
where V(l) and E(l) denotes the set of nodes and edges,
respectively. Each node vi ∈ V(l) represents a data item
xi ∈ X which is associated with the label l, i.e., y(l)i = 1. Each
edge eij ∈ E(l) represents a link between nodes vi and vj . In

this paper we have proposed a multi-label variation of the k-
nearest neighbors graph in which a connection eij ∈ E(l) exists
if xj is among the nearest neighbors of xi, y

(l)
i = y

(l)
j = 1 and∑L

l=1 outdegree(vi ∈ V(l)) ≤ k. In this variation, any data
item that belongs to multiple class labels can be inserted into
multiple graphs. Notice that the vertices do not necessarily will
have the same degree in those graphs as the proposed nearest
neighbors graph is asymmetrical, i.e, a vertex u may be in the
k neighbors of a vertex v, but the opposite may not happen.
After the directed graphs are formed then they are converted
to undirected ones so that we can use the complex networks
metrics.

2) Complex Network Measures: The study of complex
networks has attracted considerable attention in recent years in
solving problems of social, biological and communication sys-
tems [19]. Complex networks can be understood as networks
that have a non-trivial topological structure, which means that
their training bias does not follow a specific or totally random
criterion [13]. In this study, we employ the following three
network measures in order to extract topological properties of
the data.

Assortativity. This measure determines how much the ver-
tices tend to connect in an assortative way. The measure can
assume values between [−1, 1], so that positive values indicate
that pairs of directly connected vertices are more likely to
behave in the same way, whereas values negatives indicate
a greater probability of connected vertices having different
behaviors [20]. Be E the number of edges in the network and
iu, ku the degrees of the vertices i and k which compose an
edge u, the assortativity can be calculated by:

r =

E−1
∑
u
iuku − [E−1

∑
u

1
2 (iu + ku)]

2

E−1
∑
u

1
2 (i

2
u + k2u)− [E−1

∑
u

1
2 (iu + ku)]2

(1)

Average Degree. This is one of the simplest network mea-
sures, which quantifies the average degree of the network.

AD =
1

N

N∑
i=1

ki (2)

Clustering Coefficient. Clustering coefficient or transitivity
quantifies how much the vertices tend to group together. The
clustering coefficient of a vertex measures how close it is to
a clique. This measure can be obtained by:

CCi =
|eus|

ki(ki − 1)
, (3)

|eus| represents how many clique of three vertices is formed
through vertex i, which means the number of connections
shared by direct neighbors of the vertex i. To form one clique, i
should be connected to {u, s} and u need also to be connected
to s. ki is the degree of the vertex i. The average clustering
coefficient of the network can be obtained by:

CC =
1

N

N∑
i=1

CCi . (4)



B. Test Phase

From the calculations of the network measures on the graph
generated in the training phase, the next steps are: the insertion
of each test item into a corresponding graph by using the same
k-nearest neighbors strategy adopted in the training phase; the
calculation of the high-level associations; and the combination
of both traditional and high-level associations.

1) Variation of the Network Measures: Given a test item x
which is virtually inserted into a graph G(l) (denoting a class
label l). The variation of the network measures in such a graph
is given by:

f (l)x = G(l)
x (u) p(l), (5)

where G(l)
x represents the variation of the test item x using

the measure u in the graph and p(l) represents the proportion
of training objects belonging to l, a strategy for dealing with
imbalanced data sets.

2) High-Level Term: After the insertion of a test instance
and the calculation of its variation in the corresponding graph,
the high-level probabilities can be obtained. If the test item
causes great variation, it probably is not in conformation with
that class pattern, i.e., it does not belong to that class. Other-
wise, it probably is compliant with that network pattern and
may be associated with the label in question. The formulation
of the high-level term is given by:

H(l)
x =

Z∑
u=1

δ(u)[1− f (l)x (u)] , (6)

where δ ∈ [0, 1],
∑Z

u δ(u) = 1 represents a weight for each
network measure, u represents the chosen network measures
for the pattern compliance analysis, and Z represents the
number of measures to combine.

3) Combination of Classifiers: At the end, the high-level
multi-label classifier performs the combination between low
and high-level associations, i.e.:

M(l)
x = λH(l)

x + (1− λ)C(l)x (7)

where M(l)
x is the value generated by the junction of the

probabilities of an object x belonging to the label l given
by a traditional multi-label classifier, denoted by C(l)x and by
the multi-label combination of network measure variations,
denoted for H(l)

x .
As M provides the probabilities associated with each label

l ∈ L, a threshold needs to be achieved in order to classify (or
not) the test item x in the class label l. Therefore, the labels
to be associated with x must respect the following criterion:

y(l)x =

{
1 if M(l)

x ≥ τ
0 otherwise.

C. Algorithm and Complexity

The Alg. 1 describes the main steps of the high-level multi-
label technique proposed here. In the following we discuss
the time complexity inherent to each of those steps. For sake

of clarity, we consider the number of nodes |
∑L

l=1 V(l) |=
O(nc) and the number of edges |

∑L
l=1 E(l) |= O(nc) as the

graphs are sparse, i.e., (k � n). Notice that c denotes the
cardinality of the data set in terms of labels per objects.

Algorithm 1: PROPOSED TECHNIQUE.

1 Require: k, X , x, λ , δ, τ
2 Build up the graphs from X (refer to SubSect. II-A1)
3 Compute Eqs. 1-4 for the graphs
4 Insert a test item x in the graphs of its k nearest neigh.
5 Compute Eqs. 5-7
6 Classify x in any label class l which Ml

x ≥ τ

1) The time complexity related to the graph construction
lies on O(n2) as the euclidean distance is computed
between each pair of data items before the nearest
neighbor search.

2) The complexity order of the network measures lies on
O(nc) for assortativity, O(ncd2) for clustering coeffi-
cient, and O(nc) for the average degree with d denoting
the mean of the average degrees. Taking the highest, we
have O(ncd2).

3) The time complexity of the insertion step lies on
O(nlog(n)) as we need to find the k nearest neighbors
of the test object.

4) The time complexity associated to calculate the variation
of the network measures lies on O(cd2) since we can
recalculate the measures only for the neighbors of the
test object.

5) Finally, the complexity order of the high-level classifier
is given by O(n2 +ncd2 +n log(n)+ cd2). As usually
we have c � n and d � n (sparse graphs), taking the
highest order term results in O(n2). However, this time
complexity can be reduced by adopting any improve-
ment of the nearest neighbor methods, such as tree-based
methods. On the other hand, the time complexity of the
low-level classifier depends on the algorithm chosen.

III. RESULTS ON A TOY DATA SET

Here we present an illustrative experiment which empha-
sizes the salient features of the proposed technique over the
traditional multi-label ones. Taking the data set denoted by Fig.
1, we have both classes Green/◦ and Red/4 corresponding to
clear and distinct patterns. The former denotes a straight line
pattern while the latter denotes some kind of spherical shape.
The data set has also test items, denoted by Black/� markers,
which seem the continuation of the line pattern, although
some of them could also be part of the spherical pattern.
Traditional classification techniques, such as decision tree,
neural networks, kNN and SVM, are much more propense to
classify these test items into the Red/4 class as they consider
only the physical features of the data, such as distance or
distribution, i.e., they have trouble to classify the test items
according to their semantic meaning (e.g., formation pattern).



Fig. 2: The correct class of each toy sample.

Despite the multi-label learning task enables to consider the
test items in both classes, most techniques designed for such
a task is strongly based on the single-label classification ones,
which means they should share similar advantages but also
similar limitations. In order to demonstrate this, we performed
a simple experiment with the illustrative data set considering
the three multi-label techniques under study: ML-kNN, CC
(SVM) and BR (NB), besides the proposed high-level multi-
label technique which is combined with BR (NB) here. In
such an experiment, the test data items in Fig. 1 needs to be
classified one by one, from left to right, being that the test data
item 1 is the leftmost square. To maintain the data distributions
during the simulations, whenever a data item is classified, it is
incorporated to the training set with the corresponding label(s)
and the training and test phases start again. For sake of clarity,
Fig. 2 shows the correct class of each toy data set sample used
in our experiments. For our analysis we also defined 0.5 as
the threshold value τ in order to get a class label from the
classification probabilities.

The results obtained by the techniques are shown by Fig.
3 which reveals the difficult of the multi-label techniques
in the detection of the related patterns. As shown in Fig.
3(a), ML-kNN is able to classify only the last five test items
(rightmost) according to the straight line pattern (Green/◦
class); every other test item was assigned to the spherical
one (Red/4 class), while no object was associated with both
classes. Similarly, Figs. 3(b) and 3(c) shows that CC (SVM)
and BR (NB) are able to associate only the three rightmost
test items to the straight line pattern, again with no object
getting both labels. These results are easy to explain as ML-
kNN, CC (SVM) and BR (NB) do not consider topological
relations among the data items, only their physical features.

By the contrary, the results of the proposed technique, which
are shown in Fig. 3(d), uncover the inherent patterns related
to both classes. In this experiment, we have adopted λ = 0.8,
which means that the high-level term had a larger contribution
in the final probabilities. By analyzing the figure, one can see
that all test items were detected as belonging to the straight line
pattern. Interestingly, test items which were in conformation
with the spherical pattern were also assigned to that label too.

Moreover, such results give evidences about the drawbacks
related to the traditional multi-label techniques and establish
an important motivation for the design and development of
new algorithms to the multi-label learning, including those
based on complex network theory. Notice that we do not
show the combination of the high-level classifier with other
low-level techniques for sake of space. In addition, as those
techniques also considers only the physical features of the data,
such combinations give us similar results to those presented
in the figure.

(a) ML-kNN (b) CC (SVM)

(c) BR (NB) (d) High-Level + BR(NB)

Fig. 3: Classification probabilities of traditional and high-level
multi-label techniques for the toy data set presented in Fig. 1.

Notice that other than the toy example, the test object is not
inserted as a training instance after being classified, implying
that the order in which the objects are tested is not relevant
to our algorithm.

IV. RESULTS ON REAL-WORLD DATA SETS

In this section we present the experimental results obtained
by the proposed technique, which combines conventional
multi-label techniques and complex network measures. The
section is organized as follows: Subsect. IV-A describes in
detail our experimental setup; Subsect. IV-B presents results
in real-world data sets; and Subsect. IV-C discuss the influence
of the parameters in the proposed technique.

A. Experimental Setup

1) Data sets: In the following we briefly describe the four
data sets used in our experiments. The selection was made to
encompass diversity on data domains. A numerical summary
about the data sets in terms of instances, features and labels is
also presented in Table I. The table also presents the cardinality
and density of each data set, which are measures that say about
“how multi-label a problem is” and that calculate respectively
the average number of labels by examples and the average
number of labels by examples divided by the total amount of
labels each data set has. The division of the data in training
and test set, which follows [21], is also presented in the table.
In the following we give a brief description about each one of
the data sets adopted in this work:
• In the Birds data set it is addressed the following problem:

given a recording of an audio, say all species of birds are
present there [22].



TABLE I: Brief description of the real-world data sets.

Data set Domain #Instances #Features #Labels Cardinality Density #Train #Test

Birds Audio 645 258 19 1.014 0.053 322 323
Emotions Music 593 72 6 1.869 0.311 391 202
Scene Image 2407 294 6 1.074 0.179 1211 1196
Yeast Biology 2417 103 14 4.237 0.303 1500 917

• The Emotions data set comprises the following problem:
given the timbre and the rhythm of a music, what will feel
who listen it? The possible labels (feelings) available at
the data set are: surprise, happiness, calm, remain quiet,
sadness and angry [23].

• The Scene data set has 294 attributes describing a variety
of images. The problem given by this data set is: taking
an image, what content it shows? Examples of labels are
beach, mountain, field and sunset [24].

• Yeast is a data set related to gene expression data and
phylogenetic profiles produced via gene microarrays. The
problem to be addressed in this data set is: given the
genetic expression and phylogenetic information of a
yeast, what are its genetic functional classes? The data
set has 14 labels for classification [8].

2) Conventional techniques and their parameters: The con-
ventional multi-label classifiers selected for this study are
Binary Relevance, Classifier Chain and ML-kNN. With such
a selection we cover techniques from both categorization
discussed in the Introduction section, namely problem transfor-
mation (BR and CC) and problem adaptation (ML-kNN), and
first-order (BR and ML-kNN) and high-order (CC) strategies.
As BR and CC transforms a multi-label problem in single-
label problems, they also requires a base classifier, which often
comes from conventional classification literature. In this work,
two base classifiers have been evaluated: Naive Bayes which
is a simple and widely used technique in multi-label learning;
and Support Vector Machine which has been a state-of-the-art
classification technique for many domains.

Regarding the parameters, we adopted the values recom-
mended by the authors in their papers. Thus, ML-kNN pa-
rameters have been defined as k = 10 (number of neighbors)
and s = 1.0 (smoothing parameter). BR has no parameter
besides the base classifier as well as CC once we defined the
order of the chain as the order of the labels. About the base
classifiers, we assumed the likelihood to be Gaussian in NB;
and defined the radial basis function as the kernel in SVM. We
also evaluated a small range of values for the kernel (µ) and
cost (C) parameters in SVM, but as the results were closely,
we kept the standard values of [21].

3) Proposed technique parameters: About our high-level
technique, we have considered the variations of three pa-
rameters in our experiments. The first parameter which
is inherent to H is the network measures weight δ. As
we have selected three network measures for our experi-
ments, namely assortativity, clustering coefficient and aver-
age degree, δ has been optimized over the following range

{(0.1, 0.1, 0.8), (0.1, 0.2, 0.7), . . . , (0.8, 0.1, 0.1)}, which as-
sures that

∑3
u=1 δ(u) = 1. The second parameter which is

related to the convex combination of both traditional multi-
label and high-level classifiers, denoted by λ in (6), is opti-
mized over the range {0, 0.1, . . . , 1.0}, where λ = 0.8 means
a contribution of 80% of the high-level term in the final
prediction. The last parameter named τ is the threshold which
a final prediction must achieve in order to get the test data item
classified in the label class under evaluation. Such a parameter
is also optimized over the range {0, 0.1, . . . , 1.0}.

4) Distance and Evaluation Metrics: The Euclidean dis-
tance has been adopted as the dissimilarity measure in our
simulations as well as the accuracy has been adopted as the
evaluation measure.

B. Results

Table II shows the results of conventional multi-label clas-
sifiers C and their respective combination with the high-level
classifier via complex network measures, denoted by M.
Unlike the subset accuracy, where only objects that had their
set of labels perfectly predicted are taken into consideration,
the accuracy measure used in this paper takes into account
each label that was correctly predicted, which provide a more
accurate representation of the model’s prediction performance.
In the following we analyze both the performance of the tradi-
tional multi-label techniques and of the high-level technique.

1) Performance of the traditional techniques: One can see
in Table II that the best results varies from technique to
technique according to the data sets, which emphasizes the
diversity of our selection in terms of data sets and techniques.
For example: ML-kNN obtained the best results for Scene
and Yeast data sets, but the worse result for Emotions; Binary
Relevance and Classifier Chain strategies using Support Vector
Machine as the base classifier achieved the best result for
Birds, followed closely by ML-kNN; and Classifier Chain
strategy using Naive Bayes as the base classifier returned the
best result for Emotions, although also the worse results for
Yeast data set.

2) Performance of the high-level technique: The results in
Table II showed that the high-level multi-label technique con-
tributed to improve the performance of the traditional multi-
label ones. Analyzing each data set in separate, one can see
that such a combination in Emotions resulted in better results
for all five algorithms; the same happened in Birds (although
with very slight improvement), where a high value for the τ
parameter improved the results of the conventional algorithms;
in Scene and Yeast data sets, the proposed technique was
not able to improve considerably the results of ML-kNN,



although have achieved this for the other four techniques under
evaluation.

TABLE II: Accuracy values of C and M for each dataset.

Alg. Birds Emotions Scene Yeast
C M C M C M C M

ML-kNN 94.6 94.9 69.6 72.1 90.9 91.0 79.0 79.1
BR (SVM) 94.8 94.9 73.5 74.3 85.9 90.1 76.7 79.8
CC (SVM) 94.8 94.9 73.5 74.5 86.3 88.8 76.7 79.1
BR (GNB) 74.1 94.9 72.7 74.2 75.6 85.7 69.9 72.4
CC (GNB) 75.3 94.9 73.9 75.9 79.3 86.1 68.6 70.5

3) Complexity of the data sets: Another point for our
analysis is the complexity inherent to each data set. Despite
Emotions has 6 labels (see Table I), the predictive accuracy
obtained in such a data set is usually smaller than that obtained
for the other data sets (with 14 or 19 labels, for example).
This can be partially explainable by two multi-label metrics,
cardinality and density, which informs that such a data set
has more occurrences of multi-label items than Birds and
Scene, for example. Yeast data set has yet a higher cardinality
value than Emotions. Interestingly, the high-level multi-label
technique achieved better improvement in both data sets.
Therefore, such a result may suggests that the classification
via network measures can be a promising technique to achieve
better performance in such a difficult scenario.

C. Parameter Analysis

Now we move on to analyze the influence of each parameter
of the high-level multi-label technique. The first parameter
we analyze is the network measures weight δ. For such an
analysis we take the best result for each data set (see Table
II) and vary the weights of the network measures in order to
evaluate the predictive performance of the technique. Notice
that we do not change λ and τ values in such an analysis.
Figure 4 shows the heatmaps of each network measure for
Emotions and Yeast data sets. To interpret such heatmaps, it is
necessary to consider the complement of the sum between the
assortativity (axis x) and clustering coefficient (axis y) weights
as the average degree weight. One can see that assortativity and
clustering coefficient have equivalent contribution in both data
sets with larger values of both network measures providing
better results than larger values of average degree. Indeed, as
the weight of average degree increases worst are the predictive
results. Our analysis with Birds and Scene data sets are not
exhibited due to the small diference in terms of performance
when varying the network measures weights, i.e., the three
network measures are closely equivalent in such data sets.

The second parameter analyzed here is the λ, which de-
notes the linear convex combination among the associations
produced by both classifiers. Again, we take the best result for
each data set in Table II and vary only the values of λ in order
to evaluate the predictive performance of the technique. The
results are shown by Fig. 5a which demonstrates that λ have
caused insignificant improvement for Birds and Emotions,
small improvement for Scene and considerable improvement
for the Yeast data set. Notice that results of M with λ = 0

(a) Emotions (b) Yeast

Fig. 4: Analysis of the network measures weight parameter δ
.

(i.e., without any contribution of the high-level classifier) can
be different from results of C (low-level classifier) as the post-
processing of M includes an additional step related to the
application of a threshold τ . Another point one can observe in
this figure is that λ = 1.0 (only the high-level term is adopted)
provides the worst predictive results, which can be easily
explained: despite network measures can detect topological
properties of the data, the information from the traditional
techniques continues very important, as they detect physical
properties of the data related to distance or distribution, for
example.

(a) λ parameter (b) τ parameter

Fig. 5: Analysis of (a) the linear convex combination parameter
λ; and (b) the threshold parameter τ .

The threshold τ is the last parameter we evaluate here.
In order to conduct its analysis we performed the same
preparation as for δ and λ. Figure 5b presents the results of
the variation of such a parameter. One can see that low values
of such a parameter results in poor performance. Otherwise,
the figure clearly suggests that best values for τ were 0.8 and
0.9.

V. CONCLUSIONS

In this paper we extend the high-level framework to the
multi-label learning task aiming to take into account both
physical and topological features of the input data in the multi-
label classification process. In order to accomplish that, we
presented a new formulation for the high-level framework
which deal with the particularities of the multi-label task.
The high-level term (topological features) is provided by
generating probabilities from the variation of a set of complex
network measures, while the low-level term (physical features)
can be provided by any traditional multi-label technique.



Experiments were performed in artificial and real-world data
sets. The results in the former emphasized salient features of
our approach in comparison to the traditional ones, such as
the ability to detect the multiple formation patterns of the
data. The results on real-world data sets showed our proposed
technique has potential to improve the predictive performance
of most of the techniques under comparison, especially in data
sets characterized by higher cardinality and density values,
which often denote more difficult scenarios to multi-label
learning. This is a promising result that allows us to consider
further investigations of the use of complex networks for
multi-label classification.

Forthcoming works include: the evaluation of other network
measures into the high-level technique, as we noticed that the
average degree has not contributed to improve the predictive
performance; the evaluation of more data sets in order to better
analyze the efficiency of our technique as the cardinality and
density values increase; the investigation of efficient graph
construction methods in order to better detect the inherent
characteristics related to both features and labels dependency;
and also the usage of other multi-label metrics of performance
beyond the accuracy. We also intend to exploit another con-
cepts of complex networks besides of the high-level one, which
can be related, for example, to characterization of importance
[13], ease of access [12] or community detection [25].
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