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Abstract—Complex networks have become an increasingly
relevant research topic in machine learning, with many learning
systems in the literature successfully exploring complex net-
work properties and measures. In data classification, the use
of complex networks allows the detection of structural and
topological patterns related, for example, to the formation pattern
of the input data. Some measures of complex networks have
already been used in this sense. However, a systematic study
capable of characterizing such measures in the context of data
classification is lacking in the literature. In this work, we evaluate
comparatively the predictive performance of some measures.
Specifically, eight complex network measures were selected from
the literature, namely: assortativity, average local clustering
coefficient, average degree, betweenness, average shortest path
length, closeness, global clustering coefficient and eigenvector
centrality. For our analyses, both artificial and real-world data
sets were considered. The results show that measures such as
average shortest path and assortativity, besides presenting high
predictive capability, are also more robust to the variation of
the network structure. In summary, this research paves a way
to support other related works in selecting more appropriate
complex network measures for data classification.

Index Terms—Complex networks, data classification, network
measures, high-level classification, network science.

I. INTRODUCTION

Although data classification is a well-known machine learn-
ing task, some studies have shown that several classification
techniques, such as decision trees, neural networks, support
vector machines, etc., have troubles in detecting semantic
patterns of the input data, like the pattern formation [1]–[3],
for example. The reason pointed out by these studies is that
such techniques perform data classification based only on the
physical attributes of the data (e.g., distance, similarity or
distribution). By the contrary, the analysis of structural and
topological properties of the data has been demonstrated to
be an efficient tool to uncover such patterns, especially when
considering measures of complex networks [4]–[7].

Learning methods based on complex networks have been the
subject of recent studies related especially to two major topics:
the construction of the network representation from feature
vector data, and the exploration of complex network measures
to take advantage of the structural, dynamical and topological
properties of the data. Regarding the construction, most studies
build up the graph by using methods based on k-nearest
neighbors heuristics, while others use density-based methods,
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like the ε-radius neighborhood, or even the combination of
both heuristics [8]–[13]. On the other hand, there are also
works focused on the construction of optimized graphs, which
are capable of achieve a better predictive performance [14],
[15], although demanding a higher computational cost.

Complex network measures have been explored in different
ways by current classification techniques. Consequently, new
data classification concepts emerged, such as pattern compli-
ance and characterization of importance. The former, origi-
nally proposed in [1], aims to classify each test item into the
network class in which its insertion causes the least variation
of the network measures. The latter, originally proposed in
[3], considers an importance score derived from the network
connectivity patterns in order to assign to the test item the
class label to which it gets the highest importance score.

Despite the literature contains an uncountable number of
network measures, very few have been investigated in the
context of data classification. Examples include assortativity,
average local clustering coefficient, average degree, closeness,
eigenvector centrality and pagerank [1]–[3], [15]–[18]. In
addition, to the best of our knowledge, there is no study in the
literature which evaluates comparatively the predictive perfor-
mance of such measures in separate, which means that the
probable contribution of each network measure to the overall
classification process is indefinite. To address that, we select
relevant and potential network measures taking into account
the data classification context, adapt the technique based on
pattern compliance to analyze the measures individually, and
design an experimental setup to evaluate the network measures
in both artificial and real data sets. Thereby, the hypothesis
investigated in this work states that certain network measures
present better predictive accuracy than others.

In a few words, the proposed technique builds up a network
from feature vector data using several graph construction
methods based on the k-nearest neighbors and ε-radius neigh-
borhood heuristics [11]. A network measure is then calculated
over each network subgraph (corresponding to a given class).
In the following, each test item is virtually inserted into the
network, the measure is recalculated, and the subgraph label in
which the insertion caused the least variation of the measure
is assigned to the test item. To be specific, eight network
measures are evaluated in this paper, namely: assortativity, av-
erage local clustering coefficient, average degree, betweenness,
average shortest path, closeness, global clustering coefficient
and eigenvector centrality.



In relation to the experiments, we evaluate the network
measures in terms of predictive capability and robustness
considering artificial data sets with low and high noise levels
as well as eight real-world data sets. The results pointed out the
average shortest path length as the most accurate and robust
measure, able to achieve better predictive performance in data
sets with higher noise levels and also less influenced by the
variation of the graph structure. They also suggested that the
average degree, which is a commonly adopted measure, is
neither robust nor achieve top results in any data set.

The remainder of this paper is organized as follows. Sect. II
describes the high-level classification model; Sect. III presents
the results obtained by the network measures in artificial and
real data sets; Sect. IV shows the application of the measures
recommended by our study to improve the performance of
traditional classifiers; and Sect. V ends the paper.

II. MODEL DESCRIPTION

The evaluation of the network measures is conducted
through of the pattern compliance technique proposed in [1].
As illustrated by Fig. 1, the technique is composed by two
major phases. In the training phase, a graph construction
method is responsible to represent the training data (usually in
the form of feature vector) into a network, in which the struc-
tural patterns associated to each network class, countoured
in Fig. 1(b), are then calculated by a given measure m. In
the test phase, a new data item is virtually inserted into the
network and classified where its insertion causes the smallest
variation of such a network measure. In the following we
describe in detail each one of these phases as well as the graph
construction heuristics and the network measures considered
in this study.

(a) Feature vector data (b) Graph construction

(c) Analysis of measure variation (d) Classification

Fig. 1: Overview about the classification model based on
complex network measures.

A. Training Phase
Let X denote a set of training data, in which each data

item is represented by (xi, yi), i = {1, . . . , n}, with xi =

{x1, . . . , xd} representing a d-dimensional vector of features
and yi ∈ Y = {1, . . . , L} a class label associated with the i-th
data item. A supervised data classification task aims to learn a
mapping function f : x→ y in order to associate a class label
to any new (test) item xu /∈ X in which yu is unknown.

Particularly, as previous works in the literature, we assume
that the network representation may reveal high-level patterns
about the input data which can be uncovered by complex
network measures. As most data sets are in the feature vector
form, we provide an additional step to convert such data into
networks. Therefore, our network-based classifier is given by
f : g(x) → y, where g(·) is a function to build up a network
G = {V,E} from the feature vector data. In such a network,
each labeled data item xi is associated to a vertex vi ∈ V and
each edge eij ∈ E refers to a link between vertices vi and vj
based on an affinity criterion derived from a graph construction
method. In this paper, we assume G is an undirected and
unweighted graph with neither multiple edges nor self-loops.

Here we consider the following graph construction methods
as the function g: k-nearest neighbors (kNN), selective kNN
(S-kNN), mutual kNN (MkNN), selective MkNN (S-MkNN)
as well as their combinations with ε-radius neighborhood (εN).
All methods based on k-nearest neighbors consider as affinity
criterion the proximity of the data items and their class label.
In common, there is an edge eij if both vertices vi and vj
have the same class label and a particular k-nearest neighbors
relationship. In the kNN and S-kNN graphs, this relationship
means that vi belongs to the k-nearest neighbors of vj or vice-
versa [11], while in MkNN and S-MkNN such a relationship is
required to be mutual, which means that vi and vj must belong
to the k-nearest neighbors of each other in order to create
a link [10], [14]. On the other hand, the difference between
the selective and non-selective methods lies on the treatment
of pairs of vertices which satisfy a given k-nearest neighbor
relationship, but have different class labels. In such cases, the
kNN and MkNN graphs simply do not create that connection,
while the S-kNN and S-MkNN avoid such a situation by
looking for the nearest neighbors only among vertices of the
same class [11], [14]. Regarding the εN graph, it is a density-
based method which creates an edge eij if both vertices vi
and vj have the same class label and are close at a distance
less than or equal to ε [11]. Notice that its combination
with any other nearest neighbors methods (e.g., kNN+εN, S-
kNN+εN, MkNN+εN and S-MkNN+εN) is nothing more than
the maximization of both adjacency matrices.

With the graph at hand, the patterns associated to each class
l ∈ Y are calculated by a network measure m over each
subgraph G(l) ⊂ G, i.e., m(G(l)). In this paper, we evaluate
eight network measures which are further presented.

B. Test Phase

In this phase, a given test item xu is mapped as a vertex vu
which is virtually connected, according to the graph construc-
tion heuristic, to its neighbors vertices of the training data. In
the following, for each subgraph G(l) ∈ G in which vu has



been connected, denoted by G(l)xu , we calculate the variation of
the network measure m as follows:

∆G(l)xu =


∣∣∣m(G(l))−m(G(l)xu)

∣∣∣∑
c∈Y′

∣∣∣m(G(c))−m(G(c)xu )
∣∣∣
−1 , (1)

in which m(G(l)) and m(G(l)xu) denote the results of applying
a given network measure m respectively before and after
the insertion of the test item; the denominator term is for
normalization and considers the variations obtained to every
subgraph (class label) in which vu was virtually connected
(denoted by Y ′); and the inverse function is to change the
magnitude order in a way that small variations receive high
scores and big variations low ones. Notice that each subgraph
examined by our formulation corresponds to a unique and
separate class label, and that c, l ∈ Y ′. Otherwise, in the
case of vu has not been connected with any vertex of a given
subgraph, the probability associated to the classification of xu
in that corresponding class label is automatically defined as
zero. Intuitively, this means that the test item does not conform
to the pattern related to that class.

In the following, the measure variation is post-processed in
order to take into account imbalanced classes:

H(l)
xu =

∆G(l)xup
(l)∑

c∈Y′ ∆G
(c)
xu p

(c)
, (2)

where p(l) means the proportion of data items belonging to the
class l ∈ Y ′ in the whole training data, and the denominator
is for normalization matters.

1) High-level classification: The classification based only
in the associations provided by the complex network measures
is performed by assigning to the test item xu the label with
highest probability score, i.e., in which its insertion caused the
smallest variation of the network measure:

f(xu) = arg max
l∈Y

H(l)
xu . (3)

Notice that such a formulation is employed in most experi-
ments of this paper in order to provide a soundness compar-
ative evaluation about the predictive power of each network
measure investigated.

2) Hybrid classication: We also evaluate the combination
of the high-level associations provided from complex networks
with those produced by traditional classification techniques.
Such techniques are known to provide low-level associations
as they perform data classification essentially based on the
physical features of the data (e.g., proximity or distribution).
In this sense, some works have evidenced the ability of
the network measures to improve the predictive performance
of such techniques by also taking into account topological
and structural features of the networked data. Let C be the
associations provided by a given low-level classifier (e.g.,
naive bayes or support vector machine), the combination with
the high-level classifier is given by:

M(l)
xu = λH(l)

xu + (1− λ)C(l)xu , (4)

in which λ is a parameter that represents the linear convex
combination between the high and low-level associations. The
final classification uses the same procedure as denoted in (3),
but now changing the term H(l)

xu by M(l)
xu .

C. Complex Network Measures

In the high-level classification, structural and topological
information are captured from the networked data through
of complex network measures. Despite the literature contains
a wide range of network measures, very few have been
investigated in such a context. The network measures evaluated
in this study are listed by Tab. I. In the table, the column
“Refs.” indicates related works that employed the correspond-
ing measure for data classification.

III. EXPERIMENTAL RESULTS

In this section we present the experimental results ob-
tained by evaluating the eight network measures over real
and artificial data sets. In the following experiments, we
adopt a 10-fold stratified cross-validation process averaged
over three executions, totaling 30 runs. Graph methods based
on the k-nearest neighbors heuristic have their parameter k
selected over the following range {1, 2, . . . , 15}, while those
based on the ε-radius neighborhood have their parameter ε
selected over the following range {0.1d, 0.2d, . . . , 0.5d}, with
d representing the average distance among the input data. We
also use the Euclidean distance as the dissimilarity metric for
every graph method.

A. Results on real-world data

Table II presents the real-world data sets considered here,
which are available in [25]. The selection was made to en-
compass diversity from domain as well as number of samples,
features and classes. We evaluate the predictive performance
of the network measures in terms of predictive capability and
robustness. With the former, we analyze the potential of the
network measures to detect patterns through of the networked
data. By analyzing the predictive capability we are interested
in answering “how good a given network measure may be
in the classification task?”. With the latter, we investigate the
robustness of the network measures in relation to the variation
of the graph structure. Thus, we are looking on to answer “how
straightforward is to achieve that predictive capability?”.

1) Predictive capability analysis: Table III shows the best
predictive accuracy obtained by each network measure over
the eight data sets using the graph construction methods
presented before. In the table, boldfaced results indicate the
top predictive accuracy achieved for a given data set and
underlined ones indicate the graph construction method which
provided better results for each network measure. Notice that
the reference performance (with k = 1) is presented in the
“Baseline” column and, with exception of the Dig. data set,
the network measures are able to improve the baseline in any
other data set, with such an improvement varying from 1%
(Bal.) to 7.4% (Eco.) of accuracy. Interestingly, five different



TABLE I: Complex network measures evaluated in this study.

Abbrev Network Measure Definition Refs.

ASS Assortativity [19]
|E|−1∑

u iu − [|E|−1∑
u

1
2 (iu + ku)]

2

|E|−1
∑
u

1
2 (i

2
u + k2u)− [|E|−1

∑
u

1
2 (iu + ku)]2

[1], [15]–[18]

ALC Avg. Local Clustering Coefficient [20]
1

n

n∑
i=1

|eus|
Ni (Ni − 1)

[1], [2], [15]–[18]

ADG Avg. Degree
1

n

n∑
i=1

ki [1], [2], [16]–[18]

BET Betweenness [21]
1

n

n∑
i=1

∑
u,v ∈ V−{i}

ηiuv
ηuv

-

ASP Avg. Shortest Path Length [4]
1

n(n− 1)

∑
i6=j

d(i, j) [17]

CLO Closeness [22]
1

n

n∑
i=1

(
n− 1∑n
j=1 d(i, j)

)
[2], [15]

GCC Global Clustering Coefficient [23]
number of closed triplets

number of open and closed triplets
[17]

ECE Eigenvector Centrality [24] Ax = λx, λxi =
n∑
j=1

aijxj [2]

TABLE II: Meta-description of the real data sets in terms of
number of instances, features and classes.

Abbrev. Name #Inst. #Feat. #Class

App. Appendicitis 106 7 2
Bal. Balance 625 4 3
Dig. Digits 5620 64 10
Eco. Ecoli 336 7 8
Gla. Glass 214 9 7
Iris Iris 150 4 3
Son. Sonar 208 4 3
Thy. Thyroid 215 5 3

network measures and eight different graph construction meth-
ods achieved the best predictive results in at least one data set,
which emphasizes the ability of complex network measures
to capture a considerable range of structural and topological
properties of the data. In the table, one can see that the network
measures CLO and ASP achieved the best results to three
data sets each, and ASS was able to outperform the baseline
in seven of eight data sets. Also in the table, the S-kNN+εN
graph contributed in three of the best results. Regarding the
configuration of network measure and graph construction, ASS
returned five of its best results with a kNN graph, GCC did
the same with the S-kNN one, and ASP returned six and five
of its best results respectively with S-kNN+εN and S-kNN.

In order to analyze statistically the predictive capability of
the network measures, we conduct the Wilcoxon Signed Ranks
test [26] by comparing the accuracy results of any pair of
(measure, graph) against each other. As our simulations have
eight network measures and eight graph methods, we have
a total of 64 models, thus 63 comparisons for each model.
At a confidence level of 95% (α = 0.05), Tables V and VI
present respectively the top 10 models with more favorable
(“wins”) and unfavorable (“losses”) significant differences. In
Table V, one can see five different network measures, with
CLO occupying five positions in the rank; in addition, there are

seven of eight graph construction methods, emphasizing the
importance of considering several graphs in our experiments.
Otherwise, six network measures are present in Table VI, all
them working on graphs composed by the εN method. A
probable reason of such a drawback in the εN-based methods
can be seen in the results of some data sets in Table III
(e.g, Gla.), in which the predictive accuracy of the network
measures is largely decreased (worse than the baseline). This
suggest that such εN-based methods are missing out local and
relevant topological features.

2) Robustness analysis: In the following we analyze the
robustness of the network measures regarding the variation of
the graph structure. This is a relevant analysis as it may reveals
how sensible (or not) a given measure is in function of the
parameter choice. Table IV shows the predictive performance
of the network measures as an average of their results for
each value of k considering the graph construction methods.
As one can see, ASP has a notable performance here, much
better than any other network measure. The measure achieves
the best results for the eight data sets under analysis. In the
case of “Eco.” data set, for example, ASP provided better
averaged results than the best results of any other measure
presented in Tab. III. Interestingly, ASP and GCC obtained
their best results always with the S-kNN or S-kNN+εN graphs.
Otherwise, ADG prefers the MkNN or M-kNN+εN graphs.

We conduct the Wilcoxon test in order to analyze statisti-
cally the results in terms of robustness. Taking a confidence
level of 95% again, Tables VII and VIII present respectively
the top 10 models with more favorable (“wins”) and unfavor-
able (“losses”) significant differences. In Table VII, one can
see three different network measures (ASP, ASS and ALC),
with ASP achieving an outstanding number of 62 wins. Such a
result emphasizes the salient features of that network measure
which, besides the high predictive capability (boldfaced in
Table V), has a robust performance (boldfaced in Table VII).



TABLE III: Predictive capability of the network measures in function of different graph construction methods. Best local results
are underlined and best global results are boldfaced.

Data Graph ASS ALC ADG BET ASP CLO GCC ECE Baseline

App.

kNN 82.7±5.2 79.6±7.6 82.7±4.6 79.6±7.6 79.6±7.6 80.6±7.6 79.6±7.6 83.4±5.0

79.6±7.6

kNN+εN 82.7±5.2 79.6±7.6 82.7±4.6 79.6±7.6 79.6±7.6 80.6±7.6 79.6±7.6 83.4±5.0
S-kNN 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 83.4±7.8 82.1±6.9 79.6±7.6 82.1±6.6
S-kNN+εN 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 83.4±7.8 82.1±6.9 79.6±7.6 82.1±6.6
MkNN 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 80.9±6.1
MkNN+εN 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 81.5±5.8
S-MkNN 79.6±7.6 80.8±7.4 82.7±4.6 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 79.6±7.6
S-MkNN+εN 80.8±6.8 80.2±7.7 82.7±4.6 79.6±7.6 79.6±7.6 82.7±4.6 79.6±7.6 79.6±7.6

Bal.

kNN 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 95.8±2.0

94.9±2.3

kNN+εN 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.9±2.2
S-kNN 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 95.6±2.4 94.9±2.3
S-kNN+εN 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.7±2.3 95.0±2.3
MkNN 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 96.1±2.1 94.9±2.3 94.9±2.3
MkNN+εN 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 96.2±2.2 95.0±2.3 95.0±2.3
S-MkNN 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 94.9±2.3 96.1±2.1 94.9±2.3 94.9±2.3
S-MkNN+εN 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 95.0±2.3 96.2±2.1 95.0±2.3 95.0±2.3

Dig.

kNN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3

98.8±0.3

kNN+εN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3
S-kNN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3
S-kNN+εN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3
MkNN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3
MkNN+εN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3
S-MkNN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3
S-MkNN+εN 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3 98.8±0.3

Eco.

kNN 82.9±5.0 81.3±5.3 80.6±4.6 80.6±4.6 80.6±4.6 84.4±5.7 80.6±4.6 83.7±5.5

80.6±4.6

kNN+εN 82.9±5.0 81.3±5.3 80.6±4.6 80.6±4.6 80.6±4.6 84.4±5.7 80.6±4.6 83.7±5.5
S-kNN 80.6±4.6 82.7±6.0 82.2±5.4 84.3±5.9 88.0±4.9 84.1±5.2 81.0±5.4 82.5±5.5
S-kNN+εN 80.6±4.6 82.7±6.0 82.2±5.4 84.3±5.9 88.0±4.9 84.1±5.2 81.0±5.4 82.5±5.5
MkNN 81.1±5.8 80.7±4.7 81.5±4.0 80.6±4.6 81.4±5.6 82.8±4.9 80.9±5.2 82.1±5.8
MkNN+εN 81.1±5.8 80.7±4.7 81.5±4.0 80.6±4.6 81.4±5.6 82.8±4.9 80.9±5.2 81.2±5.9
S-MkNN 82.8±6.2 80.7±4.9 82.2±5.4 81.3±5.9 82.0±5.0 82.8±4.9 81.8±5.5 82.9±5.5
S-MkNN+εN 82.8±6.2 80.7±4.9 82.2±5.4 81.3±5.9 82.0±5.0 82.8±4.9 81.8±5.5 83.5±5.2

Gla.

kNN 72.9±9.6 72.9±9.6 73.1±10.7 72.9±9.6 72.9±9.6 75.2±10.3 72.9±9.6 72.9±9.6

72.9±9.6

kNN+εN 71.6±10.1 65.8±11.0 66.9±10.0 66.3±10.7 68.0±11.1 65.9±9.7 67.5±10.5 65.3±11.1
S-kNN 72.9±9.6 72.9±9.6 72.9±9.6 72.9±9.6 72.9±9.6 73.1±10.8 73.5±11.2 72.9±9.6
S-kNN+εN 72.3±10.4 66.0±12.9 65.3±9.8 67.2±10.9 68.6±10.8 65.8±9.7 68.3±11.3 67.8±9.9
MkNN 73.3±10.7 73.7±9.7 72.9±9.6 72.9±9.6 72.9±9.6 75.2±9.7 73.5±10.6 73.2±9.1
MkNN+εN 70.2±10.9 66.1±10.5 67.1±9.5 65.8±11.0 67.6±11.2 67.0±9.6 66.9±10.7 65.7±9.5
S-MkNN 73.1±11.6 74.1±10.2 72.9±9.6 72.9±9.6 72.9±9.6 75.3±9.6 73.5±9.6 72.9±9.6
S-MkNN+εN 71.1±10.9 69.5±12.2 66.1±10.3 65.7±11.4 69.2±10.7 66.7±9.5 68.6±10.8 67.8±9.2

Iris

kNN 97.8±4.0 96.2±4.8 96.7±4.5 97.6±4.0 96.7±5.4 97.3±4.4 96.2±4.8 97.8±4.0

96.2±4.8

kNN+εN 96.2±4.8 94.9±5.1 96.4±4.8 95.3±5.7 96.7±3.8 97.1±4.1 94.4±5.7 95.3±4.9
S-kNN 96.7±4.5 96.2±4.8 96.2±4.8 97.6±4.0 97.3±3.7 96.2±4.8 96.9±4.5 96.7±4.5
S-kNN+εN 94.7±5.6 95.6±5.0 96.2±5.1 96.9±4.8 97.3±3.7 95.3±5.7 95.6±5.3 95.6±5.0
MkNN 96.7±4.1 96.2±4.8 96.2±4.8 96.2±4.8 96.2±4.8 97.8±4.0 96.2±4.8 96.9±4.5
MkNN+εN 96.7±4.1 94.2±5.6 97.1±4.1 95.3±4.9 96.2±4.1 97.1±4.1 94.2±5.6 95.3±4.9
S-MkNN 96.2±4.8 96.2±4.8 96.2±4.8 96.2±4.8 96.2±4.8 97.8±4.0 96.2±4.8 96.7±4.1
S-MkNN+εN 96.7±4.1 96.2±4.4 97.1±4.1 96.0±4.7 97.1±3.3 96.9±4.5 94.4±5.5 95.3±4.9

Son.

kNN 83.2±6.7 82.8±6.1 83.8±5.8 82.8±6.1 82.8±6.1 82.8±6.1 82.8±6.1 82.8±6.1

82.8±6.1

kNN+εN 83.2±6.7 82.8±6.1 83.8±5.8 82.8±6.1 82.8±6.1 82.8±6.1 82.8±6.1 82.8±6.1
S-kNN 82.8±6.1 82.8±6.1 82.8±6.1 82.8±6.1 83.0±6.5 82.8±6.1 84.4±5.5 83.0±5.9
S-kNN+εN 82.8±6.1 82.8±6.1 82.8±6.1 82.8±6.1 83.0±6.5 82.8±6.1 84.4±5.5 83.1±6.3
MkNN 82.8±6.1 83.6±6.2 82.8±6.1 83.6±6.6 83.0±6.8 82.8±6.1 83.5±6.5 82.8±6.5
MkNN+εN 82.8±6.1 83.6±6.2 82.8±6.1 83.8±6.5 83.0±6.8 82.8±6.1 83.5±6.5 83.0±6.1
S-MkNN 82.8±6.1 84.6±6.9 82.8±6.1 84.2±6.4 83.9±6.9 82.8±6.1 84.6±6.9 82.8±6.1
S-MkNN+εN 82.8±6.1 84.6±6.9 82.8±6.1 84.6±6.9 83.9±6.9 82.8±6.1 84.7±7.2 83.5±5.8

Thy.

kNN 96.3±4.1 95.6±5.0 95.6±5.0 96.1±5.6 96.1±4.6 95.6±5.0 95.6±5.0 95.6±5.0

95.6±5.0

kNN+εN 95.6±4.9 95.0±4.5 96.1±4.4 96.1±4.4 96.3±5.1 96.1±4.4 95.0±4.2 94.9±4.9
S-kNN 95.6±5.0 95.8±4.9 95.6±5.0 96.1±5.6 96.7±3.8 95.6±5.0 96.4±4.3 95.6±5.0
S-kNN+εN 95.2±4.8 95.5±5.8 96.1±4.4 96.1±4.4 96.9±4.9 95.0±5.1 95.8±4.1 95.3±4.9
MkNN 96.1±4.9 95.6±5.0 95.6±5.0 95.9±5.1 96.3±4.8 95.6±5.0 95.6±5.0 95.6±5.0
MkNN+εN 94.8±4.3 94.7±5.0 96.1±5.6 96.1±4.4 94.7±5.0 96.6±5.1 94.9±5.1 95.5±4.7
S-MkNN 96.3±3.3 95.6±5.0 95.6±5.0 96.4±4.8 95.6±5.0 95.6±5.0 95.6±5.0 95.6±5.0
S-MkNN+εN 95.8±4.5 94.7±5.0 96.1±5.6 96.1±4.4 95.4±5.5 96.6±5.1 94.9±5.1 95.3±4.7

Another measure which deserves attention is the ASS that was
also present (boldfaced) in the top positions of both Tables
V and VII. Indeed, with exception of ASP.S-kNN, ASP.S-
kNN+εN and ASS.kNN, no other measure was able to achieve
the top positions of both analysis. Otherwise, three network
measures (ADG, CLO and ECE) are present in Table VIII.
Despite CLO and ECE presented good predictive capability
in Table V, they seem to be very sensitive to the variation of
the graph structure. The reason of that may lies in the nature
of such measures which are based on centrality heuristics.
In this sense, an alternative design of the pattern compliance
strategy may be desirable for such measures, or even their
investigation in a more related context, like the classification

via characterization of importance.

B. Results on artificial data
The artificial data sets considered in this work are presented

by Fig. 2. The Moons1 data set is exhibited by Fig. 2(a) and
the Gauss2 by Fig. 2(b). Notice that every data set represents a
binary classification problem and denotes a configuration with
low and high noise levels.

The results obtained by the eight network measures are
presented by Fig. 3, in which each subfigure denotes their
predictive accuracy over a given data set using the kNN and
S-kNN graphs. In the Moons1 data set, one can see that there
is a small difference between the results provided through of
both graphs. In addition, the network measures in the Moons1



TABLE IV: Robustness analysis of the network measures in function of different graph construction methods. Best local results
are underlined and best global results are boldfaced.

Data Graph ASS ALC ADG BET ASP CLO GCC ECE

App.

kNN 64.5±12.2 70.5±5.3 51.8±17.5 50.9±16.5 71.0±3.5 51.8±17.4 62.9±10.3 54.2±18.8
kNN+εN 67.7±2.8 70.9±3.4 51.8±17.5 50.9±16.5 71.0±3.5 51.8±17.4 62.9±10.3 54.2±18.8
S-kNN 56.4±16.4 61.1±12.0 52.0±17.6 51.6±17.0 80.6±2.0 52.0±17.5 68.3±7.4 54.7±19.7
S-kNN+εN 59.6±8.9 61.1±12.0 52.0±17.6 51.6±17.0 80.6±2.0 52.0±17.5 68.3±7.4 54.7±19.7
MkNN 61.5±10.5 62.4±7.2 53.6±19.6 51.2±16.5 53.8±14.0 52.7±18.5 59.6±10.1 55.9±17.9
MkNN+εN 66.8±3.0 73.3±1.8 53.6±19.6 51.2±16.5 62.2±4.9 52.7±18.5 63.9±3.7 56.2±18.1
S-MkNN 65.2±9.1 58.6±13.6 52.3±17.7 51.9±17.6 61.9±9.2 53.4±17.7 59.4±13.2 57.2±17.8
S-MkNN+εN 74.8±2.0 58.8±11.2 52.3±17.7 51.9±17.5 61.9±9.1 53.4±17.7 60.3±6.4 57.6±18.2

Bal.

kNN 80.8±7.3 78.1±7.6 71.5±10.3 72.1±11.7 85.1±3.6 71.4±11.2 78.3±8.4 72.9±11.7
kNN+εN 80.9±7.2 78.1±7.7 71.6±10.4 72.2±11.7 85.0±3.6 71.5±11.2 78.4±8.5 73.1±11.7
S-kNN 76.0±9.7 79.4±7.1 68.3±12.0 73.0±11.3 89.8±1.8 70.6±10.9 80.0±7.9 72.2±11.9
S-kNN+εN 76.0±9.8 79.4±7.2 68.6±12.6 73.0±11.4 89.8±1.8 70.7±11.0 79.9±8.1 72.3±12.0
MkNN 79.4±8.3 77.5±7.6 71.8±10.7 72.2±11.4 80.7±5.5 71.7±11.8 76.5±8.6 72.2±11.3
MkNN+εN 79.4±8.2 77.7±7.6 71.8±10.6 72.3±11.4 80.8±5.5 71.7±11.8 76.4±8.7 72.4±11.4
S-MkNN 77.6±9.7 77.7±7.6 69.8±11.4 72.0±11.1 85.4±3.2 71.5±11.7 77.0±8.1 71.6±11.8
S-MkNN+εN 77.6±9.7 77.7±7.6 70.0±11.6 72.0±11.1 85.3±3.3 71.5±11.8 77.0±8.2 71.5±11.9

Dig.

kNN 94.8±2.8 95.1±2.1 92.7±3.9 93.2±4.2 96.9±0.9 92.9±3.8 94.1±3.1 92.7±4.0
kNN+εN 94.8±2.8 95.1±2.1 92.8±4.0 93.2±4.2 96.9±0.9 92.9±3.8 94.1±3.1 92.7±4.0
S-kNN 94.4±3.1 94.8±2.3 92.6±3.9 93.2±4.2 97.0±0.8 92.6±4.0 94.4±3.0 92.7±4.0
S-kNN+εN 94.4±3.1 94.8±2.3 92.7±4.0 93.2±4.2 97.0±0.8 92.6±4.0 94.4±3.0 92.7±4.0
MkNN 94.2±3.3 94.2±2.7 92.9±4.0 93.1±4.0 93.9±3.1 93.4±3.6 93.4±3.5 93.0±3.8
MkNN+εN 94.2±3.3 94.2±2.7 93.2±4.1 93.1±4.0 93.9±3.1 93.4±3.6 93.4±3.5 93.0±3.9
S-MkNN 94.3±3.3 94.3±2.6 92.8±4.0 93.1±4.0 94.0±3.0 93.3±3.6 93.4±3.5 93.0±3.8
S-MkNN+εN 94.3±3.3 94.3±2.6 93.1±4.1 93.1±4.0 94.0±3.0 93.3±3.6 93.4±3.5 93.0±3.9

Eco.

kNN 74.7±5.9 68.6±5.8 55.2±15.0 63.2±12.3 73.2±3.0 59.4±13.1 58.8±12.0 56.2±16.7
kNN+εN 74.7±5.9 70.8±1.4 55.2±15.0 63.2±12.3 73.2±3.0 59.4±13.1 58.8±12.0 56.2±16.7
S-kNN 63.6±10.6 70.4±5.3 54.2±15.3 63.9±12.7 85.8±1.8 57.4±13.1 62.3±12.6 55.2±16.3
S-kNN+εN 63.6±10.6 70.4±5.3 54.2±15.3 63.9±12.7 85.8±1.8 57.4±13.1 62.3±12.6 55.2±16.3
MkNN 69.7±6.7 63.9±8.2 55.5±15.3 60.7±12.5 63.7±9.0 58.0±15.1 57.7±12.8 58.0±15.5
MkNN+εN 71.2±1.6 69.1±2.6 55.5±15.3 60.7±12.5 63.7±9.0 58.0±15.1 57.7±12.8 57.9±15.4
S-MkNN 68.0±8.7 71.5±3.9 54.4±15.7 62.1±11.8 70.5±5.2 58.0±13.9 60.6±11.2 57.1±15.7
S-MkNN+εN 68.0±8.7 71.5±3.9 54.4±15.7 62.1±11.8 70.5±5.2 58.0±13.9 60.6±11.2 57.1±15.7

Gla.

kNN 55.2±10.6 58.9±6.3 45.8±14.5 47.6±14.1 58.9±6.8 46.5±15.7 53.6±10.1 44.8±15.6
kNN+εN 54.3±9.6 57.2±4.2 43.8±12.1 45.8±12.0 57.1±5.0 44.4±13.0 52.1±8.3 42.8±13.3
S-kNN 52.7±11.4 60.5±6.3 43.3±15.1 47.8±14.3 65.1±2.8 44.5±15.2 54.7±11.0 46.7±15.5
S-kNN+εN 51.5±10.3 58.5±4.4 41.5±13.0 45.8±12.0 63.9±1.5 42.3±12.6 53.3±9.2 44.7±13.3
MkNN 54.8±10.1 55.5±8.3 48.0±15.2 47.9±14.5 52.0±11.2 50.8±13.2 52.2±10.7 47.2±14.2
MkNN+εN 54.4±8.7 53.8±5.8 46.1±13.1 45.9±12.2 50.4±9.5 48.4±10.3 50.6±8.7 45.2±11.9
S-MkNN 55.7±11.3 55.1±9.3 45.3±15.0 47.8±14.6 58.9±6.2 53.5±10.6 54.7±9.9 49.3±13.2
S-MkNN+εN 54.7±10.4 53.9±7.8 43.5±13.1 45.9±12.4 57.8±5.2 51.2±7.8 53.6±8.4 46.9±11.4

Iris

kNN 92.1±3.1 90.4±3.2 84.5±7.4 86.0±8.0 94.0±1.9 85.4±7.3 86.8±6.4 84.5±7.6
kNN+εN 91.7±2.7 90.3±2.8 84.3±7.3 85.6±7.5 96.4±0.1 85.2±7.2 87.3±0.0 84.1±7.0
S-kNN 88.4±4.7 89.3±4.8 84.4±7.4 85.5±8.4 96.5±0.5 84.5±7.4 88.2±6.5 84.5±7.4
S-kNN+εN 88.0±4.2 89.1±4.5 84.3±7.3 85.4±8.2 97.0±0.4 84.2±7.0 87.8±6.0 84.2±6.9
MkNN 88.8±5.2 88.2±4.5 84.7±7.7 85.0±7.4 89.4±3.8 86.3±6.5 86.2±6.3 85.1±7.2
MkNN+εN 88.3±4.8 87.9±4.0 84.7±7.8 84.9±7.1 96.2±0.0 86.5±6.7 87.3±0.0 84.5±7.0
S-MkNN 88.0±5.6 90.2±4.0 84.7±7.7 85.0±7.8 92.9±2.0 85.9±6.8 87.6±5.3 85.4±7.1
S-MkNN+εN 87.7±5.3 89.8±3.6 84.7±7.8 84.9±7.8 96.2±0.0 86.0±7.0 87.6±5.1 84.7±6.9

Son.

kNN 64.4±9.9 62.0±11.0 54.7±16.3 55.5±17.7 67.1±8.4 56.2±15.1 64.8±9.8 53.9±16.2
kNN+εN 64.4±9.9 62.0±11.0 54.7±16.4 55.5±17.7 67.2±8.4 56.2±15.1 64.8±9.8 53.9±16.2
S-kNN 64.6±10.8 63.0±9.8 52.5±15.9 55.9±18.0 68.9±7.6 53.1±15.6 68.7±9.7 54.5±16.3
S-kNN+εN 64.6±10.8 63.0±9.8 52.6±16.0 55.9±18.1 68.9±7.6 53.1±15.6 68.7±9.7 54.5±16.3
MkNN 59.1±15.2 66.3±8.1 56.9±15.5 58.7±14.2 58.9±13.3 56.0±13.7 58.9±13.3 55.5±15.3
MkNN+εN 59.3±15.4 66.4±8.1 57.0±15.7 58.7±14.3 59.0±6.9 56.0±13.7 58.9±13.4 55.3±15.0
S-MkNN 64.2±11.6 62.8±11.1 53.6±15.9 55.2±17.1 61.9±11.7 55.8±13.8 64.9±10.8 55.8±14.5
S-MkNN+εN 64.2±11.6 62.9±11.2 53.9±16.2 55.3±17.2 61.9±11.7 55.9±13.8 65.0±10.9 56.0±14.7

Thy.

kNN 92.1±3.3 92.8±2.2 86.7±6.3 93.4±1.9 95.3±0.7 88.9±4.2 89.4±5.3 86.5±7.0
kNN+εN 91.4±2.8 92.7±2.1 86.9±6.6 93.5±2.0 95.3±0.7 89.0±4.4 89.5±5.3 86.2±6.7
S-kNN 89.7±4.7 92.9±2.6 86.5±6.5 93.6±1.8 95.3±0.9 88.7±4.0 89.7±6.0 86.6±7.1
S-kNN+εN 89.3±4.6 92.9±2.6 86.7±6.8 93.6±1.8 95.6±0.7 88.7±4.0 89.5±5.8 86.4±6.9
MkNN 88.1±6.8 91.1±3.0 88.0±5.4 92.4±3.3 90.8±3.9 89.6±4.1 87.5±5.5 87.8±5.8
MkNN+εN 87.7±6.4 91.2±2.8 88.8±1.8 92.6±3.4 90.8±3.7 90.2±4.6 87.8±5.7 87.2±6.0
S-MkNN 90.2±5.2 91.8±2.4 86.5±6.6 93.2±2.2 93.0±1.6 87.3±5.8 89.0±4.8 86.5±7.0
S-MkNN+εN 89.6±4.8 91.8±2.3 86.9±3.7 93.4±2.2 93.8±0.8 87.8±6.3 89.3±5.0 86.4±7.1

TABLE V: Predictive capability analysis of the top 10 mea-
sures with favorable significant differences (wins) according
to the statistical test of Wilcoxon.

Pos Measure.Graph #Wins ↑ #Draws #Losses

1 ASP.S-kNN 44 19 0
2 CLO.MkNN 41 22 0

CLO.S-MkNN 41 22 0
4 ASS.kNN 34 29 0

ECE.kNN 34 29 0
6 ASP.S-kNN+e 21 42 0
7 GCC.S-kNN 19 44 0

CLO.kNN 19 44 0
9 CLO.MkNN+e 11 52 0

CLO.S-MkNN+e 11 52 0

TABLE VI: Predictive capability analysis of the top 10 mea-
sures with unfavorable significant differences (losses) accord-
ing to the statistical test of Wilcoxon.

Pos Measure.Graph #Wins #Draws #Losses↑

1 GCC.kNN+e 0 23 40
2 ALC.kNN+e 0 24 39
3 ALC.MkNN+e 0 29 34
4 ASS.S-kNN+e 0 35 28
5 GCC.MkNN+e 0 36 27
6 BET.kNN+e 0 43 20
7 ASP.MkNN+e 0 46 17
8 ALC.S-kNN+e 1 47 15
9 ECE.MkNN+e 0 49 14
10 BET.MkNN+e 0 51 12

ASS.MkNN+e 0 51 12



TABLE VII: Robustness analysis of the top 10 measures
with favorable significant differences (wins) according to the
statistical test of Wilcoxon.

Pos Measure.Graph #Wins ↑ #Draws #Losses

1 ASP.S-kNN 62 1 0
ASP.S-kNN+e 62 1 0

3 ASP.kNN 60 1 2
ASP.kNN+e 60 1 2

5 ASS.kNN 47 12 4
ASS.kNN+e 47 12 4

7 ALC.kNN+e 44 15 4
8 ALC.kNN 43 16 4
9 ASP.S-MkNN+e 41 18 4
10 ALC.MkNN+e 40 19 4

ALC.S-kNN+e 40 19 4
ALC.S-kNN 40 19 4
ASP.S-MkNN 40 19 4

TABLE VIII: Robustness analysis of the top 10 measures with
unfavorable significant differences (losses) according to the
statistical test of Wilcoxon.

Pos Measure.Graph #Wins #Draws #Losses↑

1 ADG.S-kNN+e 0 1 62
2 ADG.S-kNN 0 3 60
3 ADG.S-MkNN 2 9 52

ADG.kNN+e 2 9 52
ADG.S-MkNN+e 2 9 52

6 ADG.kNN 2 10 51
7 CLO.S-kNN+e 1 14 48
8 CLO.S-kNN 2 13 48
9 ECE.S-kNN+e 2 21 40
10 ECE.kNN+e 1 23 39

data set requires smaller values of k to provide the best results
than in the Gauss2 data set. This could suggest that bigger
values of k may be required as the noise levels get higher.
Generally speaking, most of the network measures achieve
their best results with small values of k, which means that their
predictive power is directly associated to the highest affinities
among the data items. Otherwise, ASP has its predictive
capability less sensible to the changes in the graph structure,
which makes it a robust measure.

In summary, the experiments with artificial data confirm
some insights obtained with the real ones. They showed, for
example, that ASP, ASS and ALC are more robust to the
variation of the graph structure; that measures like BET and
CLO present good predictive capability in specific situations,
such as in the case of graphs constructed with small values of
k; and that measures like ADG seems to have limitations in
terms of both predictive capability and robustness.

IV. HYBRID CLASSIFICATION ANALYSIS

Our last experiment consists of analyzing the combination
of low-level classifiers with the high-level analysis provided
by the network measures investigated. Two widely known low-
level techniques have been adopted here: the Naive Bayes
(NB) which is a classical technique and the Support Vector
Machine (SVM) which is a state-of-the-art technique for a

(a) Moons1 (b) Gauss.2

Fig. 2: Artificial data sets with lower and higher noise levels.

(a) Moons1 (kNN) (b) Moons1 (S-kNN)

(c) Gauss.2 (kNN) (d) Gauss.2 (S-kNN)

Fig. 3: Comparative evaluation of the network measures on
the artificial data sets.

wide range of classification problems. Regarding the parame-
ters of both techniques, in the NB we assume the likelihood
to be Gaussian; and in the SVM we adopted the radial basis
function (rbf) as kernel and selected the cost and kernel
parameters respectively over the range {2−4, 2−2, . . . , 212}
and {2−6, 2−4, . . . , 210}. For the high-level associations, we
selected the recommended network measures according to
our results discussed before, i.e., ASS with the kNN graph
(ASS.kNN) and ASP with the S-kNN one (ASP.S-kNN). Table
IX presents the results obtained by the hybrid classification
method. The Networkless rows denote results obtained by
traditional classifiers when λ = 0, i.e., without the high-
level associations provided by the complex network measures.
One can see in the table that both network measures ASS
and ASP are able to improve the predictive performance of
the traditional classifiers. For example, ASP improved the NB
results in every data set under analysis, while ASS improved
the SVM results over seven of eight data sets.

V. CONCLUSIONS

In this paper we evaluate comparatively the contribution of
eight well-known complex network measures for data clas-
sification. Our hypothesis was that certain complex network
measures present better predictive performance than others. To
the best of our knowledge, this is the first study focused on
the individual characterization of the measures in that context.



TABLE IX: Predictive accuracy of the hybrid classification
model considering the NB and SVM low-level classifiers, and
ASS.kNN and ASP.S-kNN high-level ones. The Networkless
rows refer to classification results provided only by the low-
level techniques, i.e., without the network measures.

Data ∆G NB SVM

App.
Networkless 80.3±12.0 81.7±7.5
ASS.kNN 83.1±5.6 (λ = 0.8) 83.6±7.0 (λ = 0.4)
ASP.S-kNN 82.4±10.1 (λ = 0.9) 82.7±6.6 (λ = 1)

Bal.
Networkless 90.0±2.2 99.0±1.3
ASS.kNN 96.3±2.7 (λ = 0.3) 99.6±0.9 (λ = 0.2)
ASP.S-kNN 95.7±2.3 (λ = 0.3) 99.6±0.8 (λ = 0.2)

Dig.
Networkless 79.8±2.5 99.3±0.2
ASS.kNN 98.6±0.5 (λ = 0.9) 99.3±0.2 (λ = 0.1)
ASP.S-kNN 98.7±3.7 (λ = 0.6) 99.3±0.2 (λ = 0.1)

Eco..
Networkless 85.9±6.2 88.1±5.4
ASS.kNN 86.8±6.1 (λ = 0.2) 88.3±5.2 (λ = 0.2)
ASP.S-kNN 88.2±5.8 (λ = 0.8) 89.1±5.5 (λ = 0.3)

Gla.
Networkless 44.5±8.9 71.9±8.5
ASS.kNN 73.2±8.6 (λ = 0.9) 74.8±8.7 (λ = 0.3)
ASP.S-kNN 73.3±8.7 (λ = 0.6) 74.8±9.8 (λ = 0.3)

Iris
Networkless 97.1±4.4 94.4±12.5
ASS.kNN 98.0±3.9 (λ = 0.5) 98.2±3.8 (λ = 0.4)
ASP.S-kNN 97.3±4.4 (λ = 0.8) 97.3±4.4 (λ = 0.4)

Son.
Networkless 66.2±10.8 74.6±8.9
ASS.kNN 84.4±7.5 (λ = 0.5) 83.2±6.0 (λ = 0.4)
ASP.S-kNN 84.3±7.4 (λ = 0.5) 83.2±6.9 (λ = 0.4)

Thy.
Networkless 97.1±3.3 97.4±3.7
ASS.kNN 96.9±3.3 (λ = 0.1) 97.5±3.7 (λ = 0.1)
ASP.S-kNN 97.4±3.1 (λ = 0.5) 97.4±3.7 (λ = 0.3)

To analyze the measures, we considered several graph
construction methods based on k-nearest neighbors and ε-
radius neighborhood heuristics, adapted a high-level classifi-
cation technique based on pattern compliance, and designed
an experimental setup to apply the network measures in both
artificial and real data sets. The measures were evaluated in
terms of predictive capability and robustness.

The results revealed some network measures with great
potential, which were able to achieve high predictive capability
and also robustness to the change of the graph structure. The
recommended network measures are the average shortest path
(ASP), which had outstanding performance, and assortativity
(ASS), which presented competitive and straightforward re-
sults. We also found that ASS often provides its best results
with the kNN graph, while ASP are usually better with the
S-kNN and S-kNN+εN graphs.

On the other hand, despite the average degree (ADG) is a
commonly adopted measure in the literature, our study shows
that it is neither robust nor achieve top predictive results in
any data set. Therefore, it does not seem very appropriate to
the high-level classification via pattern compliance. Indeed,
other network measures based on centrality also share some
of these limitations. Forthcoming works will investigate such
measures in the context of the high-level classification via
characterization of importance.
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