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ABSTRACT
Reservoir computing is a computational paradigm derived from
recurrent neural network models. One of its most representative
technique is the Echo State Network (ESN), which is usually com-
posed by two salient components: reservoir and readout. The for-
mer is responsible by mapping temporal (or sequential) inputs
into a high-dimensional space and the latter aims at learning the
patterns in such a new space. Despite ESN has attracted a lot of
attention nowadays, most works in the literature are focused on
the development of additional features to the model, while there
is a considerable lack of investigations related to understand and
evaluate some of its inherent concepts as well as their relationships.
In this paper we address such a limitation by investigating ESN
components related to the reservoir structure and readout layer. To
be specific, we evaluate regular and small-world network models
besides the extensively adopted random one, and also analyze a to-
tal of eight classification techniques instead of considering just the
few techniques largely adopted in the literature (mostly linear ones).
In order to consistently evaluate the alternative ESN methods, we
analyzed a wide range of parameters in both reservoir and readout
layers through of several experiments with five real-world data
sets. The results revealed that some problems can be considerably
benefited from some level of organization in the reservoir, such as
those provided by regular or small-world network models; and that
the non-linear support vector machine classifier achieved the best
predictive performance, although it was statistically comparable
with the k-nearest neighbors one, which has much smaller time
complexity. Interestingly, such findings may make the adoption of
ESN methods more efficient from the point of view of embedded
systems and large scale problems.
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1 INTRODUCTION
A Recurrent Neural Network (RNN) is a very well-known kind of ar-
tificial neural network in which information is propagated through
of neurons interconnected by links. Different of the famous feed-
forward neural networks (e.g., Multilayer Perceptron), the salient
aspect of RNNs is the presence of cycles in the network topology,
which characterizes them as dynamical systems able to maintain
nonlinear transformations of the input data [10, 17, 20]. Common
applications of RNNs include domains related to sequential and
temporal data, like speech recognition, machine translation and
time series analysis [9, 18, 29].

Despite a considerable number of works have demonstrated the
notable success of RNNs in many applications, there are also other
works which have pointed out limitations related to convergence,
scalability and parameterization [1, 23]. Motivated by such draw-
backs, a new paradigm to design and train RNNs was proposed.
Such a paradigm, which is referred to Reservoir Computing, is
mostly based on two independent approaches which have essential
features in common, the Echo State Network (ESN) [13] and the
Liquid State Network (LSN) [22]. As the LSN model is intended to
represent and replicate more sophisticated and biologically plau-
sible neuronal theories into the reservoir, in this study we are
particularly interested in the ESN model, which originally is more
focused on machine learning theories [20].

The standard ESN model assures that an algebraic property
named echo state property is satisfied by the reservoir structure
[13]. The ESN is usually composed by two salient components: a
reservoir structure and a readout layer. The former is responsible by
mapping data inputs into a high-dimensional space and the latter
aims at learning the patterns from such a new space. Regarding
the reservoir structure, it contains cycles like conventional RNNs,
but its main difference is that the internal weights of such a struc-
ture are always fixed, i.e., there is no training or weight updating
scheme there. On the other hand, the readout layer is responsible
to learn the associations between the reservoir and the desired
output, which requires a training process. Although several works
in the literature show that a simple linear readout is often enough
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to achieve good performance in many problems, other works have
pointed out its drawbacks [14].

Several methods and variants of the original ESN [13] have been
presented in the literature, most of them covering changes in neu-
ron properties or behaviors which resulted in different non-linear
transformations [11, 27]. There are also ESN methods that work
with multiples reservoirs instead of one [8, 21] and some works
in which the focus is on improving the random structure of the
reservoir by using heuristics [3, 7, 12, 24, 25] or mathematical mod-
els [28]. On the other hand, complex network models have been a
few explored topic into the ESN context, with a related contribu-
tion published recently in [15]. In that work, regular, small-world
and random network models were investigated as reservoir struc-
tures in order to evaluate their ability to process information in a
specific context which was inspired by the human cortical neural
connectivity. Those same network models were also investigated
in [16] and strategies based on scale-free properties and hierar-
chically distributed structures in [5]. Nevertheless, to the best of
our knowledge, there is no study in the literature which evaluate
systematically the reservoir structure in function of the readout
learning as we propose in this paper.

Different of the most current ESN works which are focused on
the development of additional features to the model or inspired by
biological modeling, we evaluate here alternative ESN components
related to the reservoir structure, readout learning and parameter
settings with a special focus on machine learning aspects. From the
structure point of view, we investigate regular and small-world net-
work models besides the widely adopted random one. Regarding the
readout layer, we analyze a total of eight classification techniques
in the task of mapping the reservoir memory to the corresponding
desired output. In relation to the parameters, we systematically
consider a reasonable number of settings in both reservoir and
readout layers.

In order to consistently evaluate the alternative ESN components
investigated here, we conduct experiments with five real-world
applications which encompass very distinct characteristics in terms
of domain, samples size, and number of features and class labels. As
a glimpse, our statistical results indicated important aspects related
to each one of the topics covered by our investigation, such as that
some problems may be benefited from some level of organization in
the reservoir, especially those provided by regular network models.

The remainder of the paper is organized as follows. Sect. 2
presents a quick background about ESN. Sect. 3 describes the meth-
ods we propose for both reservoir structure and readout layer. Sect.
4 discusses the experimental results obtained and Sect. 5 concludes
the paper.

2 BACKGROUND
Reservoir computing methods are usually applied in the supervised
learning context to address learning tasks which involve temporal
or sequential data. Particularly, an ESN is a specific kind of reservoir
computing created from the echo state property, that is related
to the reservoir weight matrix and requires that its biggest auto-
value is smaller than one, which allows that any data input to the
reservoir vanish after a time. Notice that such a property do not
ensure the vanish, but in practice it is rare not work. As a supervised

technique, ESN aims at learning a function 𝑓 (.) such that for any
given input 𝑢 (𝑡) returns an output 𝑦 (𝑡) ∈ R𝑁 which approximates
the most of a ground-truth output 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡). Formally, in a given
temporal task, each object 𝑢 (𝑡) ∈ R𝑀 is associated to an output
𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡) ∈ R𝑁 , where time 𝑡 = 1, 2, . . . , 𝑋 , with X denoting the
number of sequenced objects in the data set [19].

Fig. 1 presents a general overview about the standard ESN ar-
chitecture. In the figure, one can see three major parts related to
the Input, Reservoir and Readout. The Input is represented by a
fixed weight matrix𝑊 𝑖𝑛

𝑀×𝑁 , in which𝑀 denotes the number of fea-
tures of 𝑢 (𝑡) and 𝑁 the number of neurons in the reservoir, which
is responsible to distribute the input data 𝑢 (𝑡) along all reservoir
neurons. The Reservoir aims at processing the𝑊 𝑖𝑛 output in your
structure represented by a weight matrix𝑊𝑁×𝑁 to obtain an acti-
vation vector denoted by 𝑥 (𝑡), which is the transformed data. The
Readout layer receive the output from the reservoir which can be
used through of any supervised learning technique to obtain the
predictive output y(t). Formally, the ESN is defined by the following
equations:

𝑥 (𝑡) = 𝑡𝑎𝑛ℎ(𝑊 𝑖𝑛 [1;𝑢 (𝑡)] +𝑊 [𝑥 (𝑡 − 1)]) , (1)

𝑥 (𝑡) = (1 − 𝛼)𝑥 (𝑡 − 1)) + 𝛼𝑥 (𝑡) , (2)

𝑦 (𝑡) = 𝑓 (𝑥 (𝑡)) , (3)

where 𝑥 (𝑡) ∈ R𝑁 is the activation neurons of reservoir and 𝑥 (𝑡) ∈
R𝑁 is the update state vector in time n, 𝑡𝑎𝑛ℎ(·) is applied in each
interaction, [·, ·] means a vertical concatenation in vector or matrix,
𝑊 𝑖𝑛 ∈ R𝑁×(1+𝑀) and𝑊 ∈ R𝑁×𝑁 are respectively the input matrix
and the recurrent one, and 𝛼 ∈ (0, 1] is the leaky rate. A sigmoid
function can be used instead of tanh. The model also can work
without the leaky rate, which is the special case when 𝛼 = 1 and
𝑥 (𝑡) ≡ 𝑥 (𝑡). The𝑦 (𝑡) ∈ R represents an approximation function ap-
plied in 𝑥 (𝑡) trying to map with real output𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡). Furthermore,
in case of𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡) is a discrete output we then have a classification
task.

As one can see, the weights of the matrices 𝑊 𝑖𝑛 and 𝑊 are
fixed, which means that ESN does not suffer with the convergence
problems of other recurrent methods based on gradient descent, for
example. Consequently, the ESN training and application is very
fast, which also makes the technique highly scalable. In this sense,
the investigation of models able to exploit efficient network models
and readout strategies in order to improve the ESN performance
without losing such salient features (convergence and scalability)
is a promising direction.

3 MODEL DESCRIPTION
In the following, we describe the ESN models investigated in this
paper. In addition to present a general overview about the standard
ESN architecture, Fig. 1 also shows the specific topics in which
this paper aims to contribute. Regarding the reservoir layer, our
hypothesis says that network properties, like the regular and small-
world ones, can be efficient to save and process data inputs of
problems which may be benefited from some level of organization.
Complementary, we also investigate the influence of such a level
of organization with eight different classification techniques in the
readout layer, and with different parameter settings particularly
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Figure 1: General overview about the components of an Echo State Network. The figure illustrates the ESN structure in terms
of input, reservoir and readout layer which are respectively represented by𝑊 𝑖𝑛 ,𝑊 and many classification algorithms.

related to the number of neurons in the reservoir and the generation
of the random weights.

3.1 Reservoir network models
In this study we consider the structure provided by three network
models: regular, small-world and random. Fig. 2 presents an illustra-
tive example about each one of the network models in the context
of a reservoir, in which each vertex denotes a neuron and each edge
a connection between neurons. In the figure, one can see a changing
from well-defined network connections to disorganized ones: the
regular model provides strictly organized network connections; the
small-world provides a network with a bit of randomness in its con-
nections, although it also presents a good level of organization; and
the random model provides a chaotic network with all connections
randomly generated. Next we briefly discuss each of these network
models.

• In the regular model (Reg.), showed by Fig. 2(a), each network
neuron has the same number of connections 𝑘 , i.e., the same
degree.

• In the small-world model (SW) the connections of a𝑘-regular
network are modified by considering a random rate 𝑝 to
which the values are usually on the following range 0 <

𝑝 ≤ 0.1 [26]. Fig. 2(b) exhibits a SW network generated with
𝑝 = 0.1.

• In the random model (Rand.) the network connections are
randomly defined in function of a density parameter𝑑 , which
refers to the percentage of existing links in the network. This
is the principal reservoir structure, widely adopted in the
literature. Fig 2(c) shows a random network.

3.2 Readout classifiers
The information processed by the reservoir structure is further
analyzed by a classification technique which also takes into account
the temporal information intrinsic to each sample. The output can
usually be separated by a linear classifier, but this do not mean that
other methods cannot achieve more success [14]. In this work, the
following eight algorithms are evaluated in the readout layer: k-
Nearest Neighbors(kNN), Linear Support Vector Machine (LSVM),
Logistic Regression (LR), RBF Support Vector Machine (GSVM),
Decision Tree (DT), Random Forest (RF), Multilayer Perceptron
(MLP) and Naive Bayes (NB). A salient feature of our study is that
we evaluate the predictive performance of ESN considering the
influence of both network models and readout techniques, which
may also provide a better understanding about the relationship
between complex network properties and classifiers inductive bias.

3.3 Parameter settings
In this study we rigorously evaluate two groups of parameters
related to both reservoir structure and readout classifiers. Regarding
the reservoir structure there are three parameters: the number of
neurons given by 𝑁 ; the number of connections given by 𝑘 =

𝑑 · 𝑁 , with 𝑑 referring to the percentage of existing connections in
the network (a.k.a density), which also must be selected in order
to preserve the echo state property; and the 𝜎 parameter, which
refers to the standard deviation of the weight values (𝑊 𝑖𝑛 and𝑊 ),
randomly generated following a normal distribution.

In relation to the readout classifiers, each technique has its pa-
rameter(s) carefully selected by a grid search method over a repre-
sentative set of values. Next section presents in detail the values of
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(a) Regular (b) Small-Word (c) Random

Figure 2: Example of reservoir structures generated fromdistinct networkmodels: a) in the Regular, the neurons are connected
with their k-nearest neighbors; b) In Small-Word, the neurons have a probability 𝑝 = 0.1 to change their links after being
connected with their k-nearest neighbors neurons; and c) in the Random, the connections are fully random.

parameters considered in both groups as well as the experimental
setup.

4 EXPERIMENTAL RESULTS
In the following, we describe the experiments conducted over the
reservoir structures presented before. Table 1 shows the metadata
of the five data sets selected for this study [2, 6]. One can see that
such a selection was made to encompass diversity on data domains
as well as different number of classes, attributes and sizes (they
vary from 3 to 378, 8 to 91 and 360 to 27619, respectively). A brief
introduction about each data set is presented below.

• In the Accelerometer data set, each sample denotes the po-
sition of a patient in a bedroom taken by readings of an
accelerometer sensor. The learned model should be able to
identify the position of the patient regarding the bed to
correctly detect when the patient is getting up in order to
prevent some fall.

• LIBRAS is the Brazilian sign language, which is largely used
by deaf people in Brazilian urban centers. Each word is con-
verted to a sign. The sign can be seeing as a sequence of
movements using the arms and hands. In the data set, each
object means types of movement in LIBRAS. Notice that the
sequence of movements form sentences, but the data set
does not take this in consideration. The data were acquired
mapping real movements of videos and for each frame was
generated 90 features representing the coordinates of the
movement.

• In the RSSI data set, the objects are described by 13 values,
each one representing the object distance until a specific
sensor. The sensors are scattered in the the first floor of
Waldo Library, Western Michigan University. The floor was
mapped in quadrants, thus the objective is to discover in
which quadrant the object is.

• The Wall-Following robot data set aims to predict the move-
ments of a SCITOS G5 robot using the readings of 24 ultra-
sound sensors. The data were collected as the robot navigates

through the room following the wall in a clockwise direc-
tion for four rounds. The data set were designed to test the
hypothesis that this apparently simple navigation task is
indeed a non-linearly separable classification task.

• In the Ozone data set, the objects are denoted by 73 attributes
related to day characteristics like temperature, wind speed,
solar radiation and emissions stats, which are recommended
by the Texas Commission on Environmental Quality (TCEQ)
to monitor ozone peaks. The learned model should be able
to predict the local ozone peaks into two groups: ozone day
or normal day.

Table 1: Metadata description of the data sets.

Data set #Samples #Features #Classes

Accelerometer 27619 8 3
LIBRAS 360 91 48
RSSI 1420 15 378
Wall-Following Robot 5456 24 4
Ozone 2536 73 2

In the experiments we consider the setting of parameters related
to both reservoir structure and readout classifiers. Regarding the
parameters of the network models, we considered the number of
neurons 𝑛 ∈ {100, 200, 400}, the mean standard deviation 𝜎 ∈
{0.08, 0.15, 0.22} and the density 𝑑 = 0.1. In case of 𝑛 = 400 or
𝜎 = 0.22, we decreased the density to 0.05 in order to assure that
the reservoir satisfy the echo state property. The SW network was
generated with 𝑝 = 0.1 and the 𝛼 parameter of equation 2 was
fixed as 0.1. Regarding the parameters of the classifiers evaluated
in the readout layer: kNN has the number of nearest neighbors
𝑘 ; LR has the regularization parameter 𝐶 and the penalty norm
𝑝𝑒𝑛; LSVM (linear) has the regularization parameter 𝐶 ; GSVM (rbf
kernel) has the regularization parameter𝐶 and the kernel coefficient
𝛾 ; RF has the number of trees 𝑡 ; MLP has the learning rate 𝛼 and
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the number of neurons𝑚; and CART and NB have no parameter
selection step. Table 2 lists the range of parameter values evaluated
for each technique. Each simulation is conducted through of a k-fold
stratified cross-validation process, in which the whole data set is
divided in k disjoint parts, with one being used as test and the others
as training data, resulting in a total of k executions. The predictive
performance is averaged over a repeated stratified cross-validation
that averages three runs of 5-fold stratified cross-validation, taking
the folds randomly each time. The predictive performance is given
in terms of averaged weighted-F1. The parameter values selected
for each classifier are also listed in Table 2.

Table 2: List of parameters for each technique used in read-
out and the parameter selected with the best result.

Algorithm List of parameters Selected

kNN 𝑘 ∈ (1, 3, 5, 7, 9) 𝑘 = 1
LSVM 𝐶 ∈ (2−4, 20, 24, 28) 𝐶 = 28
LR 𝐶 ∈ (2−4, 20, 24, 28) 𝐶 = 28

𝑝𝑒𝑛 ∈ (𝑙1, 𝑙2) 𝑝 = 𝑙1
GSVM 𝐶 ∈ (2−4, 20, 24, 28) 𝐶 = 28

𝛾 ∈ (2−4, 2−2, 20, 22) 𝛾 = 1
RF 𝑡 ∈ (26, 28, 210) 𝑡 = 210
MLP 𝛼 ∈ (0.0005, 0.002) 𝛼 = 0.0005

𝑚 ∈ (2𝑛, 8𝑛) 𝑚 = 2𝑛

Reservoir parameters analysis. In order to analyze statisti-
cally thousands of results, we adopted the Friedman test, which
permits to compare multiple techniques over multiple data sets
[4]. Firstly, we evaluate the 𝑛 and 𝜎 configurations in the reservoir
structure. The null hypothesis states that different configurations
of (𝑛, 𝜎) are equivalent. Under the significance level at 0.05, the
null hypothesis is rejected. Following the Nemenyi posthoc test is
adopted to find the configurations that are not equivalent [4]. Fig.
3 is the critical difference diagram obtained from the test which
compares all configurations against each other. It indicates that
(𝑛 = 200, 𝜎 = 0.22) and (𝑛 = 400, 𝜎 = 0.15) outperform any other
parameter configuration, with exception of (𝑛 = 200, 𝜎 = 0.15)
which is statistically equivalent to both. Therefore, one can see that
higher values of parameters achieved better results. Notice that
as thousands of simulations have been analyzed here, we omitted
such results for sake of space.

Figure 3: Critical difference diagram obtained by the Ne-
menyi post-hoc test considering different parameter config-
urations in the reservoir structure.

Readout classifier analysis. In the following, we evaluate the
predictive performance of the eight classification techniques. The
results of the ESN models considering the three parameter con-
figurations with the best (and equivalent) statistical results are
presented in the Table 3. The table shows the averaged weighted-F1
of each ESN in function of the network models and readout clas-
sifiers. In the table, “Reg.”, “SW” and “Rand.” denote respectively
the regular, small-world and random network models. Taking into
account the ESN network models, the best local results in the table
are underlined and the best global results are boldfaced. By the ta-
ble, one can see that GSVM provided the best results for most data
sets, even considering the distinct network models evaluated. Inter-
estingly, kNN also presented good results in comparison with other
widely adopted readout classifiers like LR and LSVM. Furthermore,
such a classifier seemed strongly related to the regular network
model, obtaining 4/5 of their best results with that configuration.
In that sense, LR achieved all its best results with such a network
model too. In the opposite direction, LSVM achieved 3/5 of its best
results with the random network.

Regarding the statistical analysis, the null hypothesis states that
the results of the readout classifiers are equivalent. Under the sig-
nificance level at 0.05, the null hypothesis is rejected. As shown in
the diagram presented by Fig. 4, the Nemenyi posthoc test revealed
that GSVM outperforms every classifier, with exception of kNN
and LSVM, which the results are considered statistically equivalent
to GSVM. In a few words, GSVM demonstrated consistent perfor-
mance in every data set. For the Accelerometer one, GSVM with
SW network model provided the best results, closely followed by
GSVMwith Rand. model. For the LIBRAS data set, the Reg. network
model combination with GSVM provided the best results, closely
followed by GSVM with SW model. For the RSSI data set, the best
result was achieved when adopting GSVM with the Reg. network
model. Regarding the Wall-Following robot data set, LR and GSVM
with respectively Reg. and SW network models obtained the best
result. Lastly, the SW network model with the LSVM readout clas-
sifier achieved the best predictive performance for the Ozone data
set, closely followed by kNN and GSVM. Another technique which
deserves positive attention is the kNN which achieved very good
performance with much lower computational cost than GSVM:
O(𝑁 log(𝑁 )) against O(𝑁 3) in the worst case. Different of GSVM,
kNN and LSVM, other classifiers had troubles to learn the patterns
directly from the reservoir, especially the NB which presented the
worse results for the Accelerometer, RSSI, Wall-Following robot
and Ozone data sets.

Network models analysis. Now we move on to analyze sta-
tistically the network models investigated in this study. The null
hypothesis of the Friedman test says that there are no significant dif-
ference between regular, small-word and random network models.
Under the significance level at 0.05, the null hypothesis is rejected.
After applying the Nemenyi posthoc test, the critical difference dia-
gram exhibited by Fig. 5 is obtained. In the figure, one can see that
the regular network model outperforms statistically the random
model, although is statistically equivalent to the small-world one.

We also analyze statistically the network models in function
of the three best (and statistically equivalent) readout classifiers:
GSVM, kNN and LSVM. As our intention is to compare each two
network models over multiple data sets, theWilcoxon Signed Ranks
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Table 3: Averaged weighted-F1 of the eight classifiers on the five real-world data sets. Boldfaced values denote the best results
for a given data set and underlined ones the ESN which provided the better result for each network model.

Accelerometer LIBRAS RSSI Wall-Following Robot Ozone

Alg. Rand. Reg. SW Rand. Reg. SW Rand. Reg. SW Rand. Reg. SW Rand. Reg. SW

KNN 94.27 94.66 94.46 93.31 94.93 94.53 73.45 74.01 74.88 90.16 90.62 90.47 93.32 93.64 93.05
LSVM 87.29 86.41 87.22 95.84 95.56 95.35 69.26 68.52 67.32 89.73 90.81 90.53 93.36 93.51 93.79
LR 78.83 79.62 78.43 70.43 70.92 70.54 23.8 24.78 24.16 90.27 90.83 90.69 89.04 89.23 89.23
GSVM 96.83 96.65 96.96 95.9 97.19 97.11 74.95 77.01 76.51 89.97 90.72 90.83 93.24 93.14 92.91
DT 86.55 87.63 87.65 54.37 54.35 59.44 16.32 15.79 15.57 90.45 90.56 90.41 78.89 80.46 80.88
RF 73.48 73.46 73.27 82.89 82.54 83.44 44.81 43.19 44.04 90.0 90.34 90.29 78.21 78.37 78.29
MLP 77.37 80.33 78.31 76.01 75.8 77.06 47.52 39.74 42.52 89.99 90.06 90.29 89.22 88.89 89.27
NB 69.9 69.72 69.21 39.4 44.84 41.54 28.55 29.42 28.85 44.18 44.85 44.85 62.66 64.88 62.28

Figure 4: Critical difference diagram obtained by the Ne-
menyi post-hoc test considering different classification tech-
niques in the readout layer.

Figure 5: Critical difference diagram obtained by the Ne-
menyi post-hoc test considering the random, regular and
small-world network models.

test has been adopted [4]. Basically, the test calculates the differ-
ences in the results of two methods for each data set and compares
the ranks for the positive and negative differences. The null hy-
pothesis says that the ranks obtained by each two network models
(random vs regular, random vs small-world, and regular vs small-
world) are similar. The p-values found by the Wilcoxon test are
exhibited in Table 4. Under the significance level at 0.05, the test
failed to reject the null hypothesis. However, under a significance
level at 0.1, one can see that the regular network model is statis-
tically superior than the random one. In addition, analyzing the
results presented in Table 3, one can see that the best results were
mostly obtained by the regular or small-world network models,
especially with kNN and GSVM classifiers. This suggests that a
higher level of organization in the reservoir structure such as those

provided by the regular network may benefit many real-world ap-
plications and also allow the creation of the reservoir in a simple,
easy and fast way.

Table 4: P-values found by theWilcoxon testwhen analyzing
the results of the three best readout classifiers (GSVM, kNN
and LSVM) in function of the random (Rand.), regular (Reg.)
and small-world (SW) network models.

# Rand. Reg.

Reg. 0.069 -
SW 0.139 0.410

The reservoir contribution. Finally, we also evaluate the rele-
vance of the reservoir structure in terms of predictive performance
by comparing its results against those obtained by learning the
data sets directly from the readout classifiers, i.e., without the reser-
voir structure. Table 5 presents the averaged weighted-F1 results of
GSVM, kNN and LSVM with and without the reservoir. As one can
see, with exception of the Ozone data set in which the reservoir
structure decreases the results provided directly from the readout
classifiers, the ESN model achieved the best results in the other
four data sets. In the RSSI data set, for example, their results were
at least twice as high as those obtained without the reservoir. This
is a very attractive result which emphasizes the salient features of
ESN, especially because both models (with and without reservoir)
had their parameters properly tuned. Moreover, the Wilcoxon test
also attested that the models with the reservoir structure provided
statistically better results than those without it (p-value < 0.01),
which demonstrates the relevance of the reservoir in mapping the
data inputs into a high-dimensional space for the learning process.

5 CONCLUSION
In this paper we investigated alternative methods for standard com-
ponents of Echo State Networks. In a few words, we evaluated
regular and small-world network models in the reservoir structure
besides the extensively adopted random one; analyzed a total of
eight classification techniques instead of considering just the few
techniques largely adopted in the literature (most linear ones); and
evaluated systematically a considerable number of parameters in
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Table 5: Averaged weighted-F1 of the three best readout classifiers on the five real-world data sets considering both models:
with (Res.) and without (No-Res.) the reservoir structure. Boldfaced values denote the best results for a given data set and
underlined ones the model which provided the better result.

KNN LSVM GSVM

Data sets Res. No-Res. Res. No-Res. Res. No-Res.

Accelerometer 94.66 90.66 86.41 77.32 96.65 91.63
LIBRAS 94.93 91.86 95.56 91.50 97.19 93.43
RSSI 74.01 32.74 68.52 26.38 77.01 32.98
Wall-Following Robot 90.62 88.30 90.81 73.23 90.72 87.25
Ozone 93.64 95.55 93.51 94.10 93.16 95.84

both reservoir and readout layers. Experimental results with five
real-world data sets showed that (i) the non-linear support vec-
tor machine classifier achieved the best predictive performance,
although statistically comparable with the k-nearest neighbors one,
which has much smaller time complexity; and (ii) that some prob-
lems can considerably be benefited from some level of organization
in the reservoir structure, such as those provided by regular or
small-world network models, which can keep the reservoir simple,
well behaved and fast. Interestingly, such findings may make the
adoption of ESN methods more efficient from the point of view of
embedded systems and large scale problems. In the future we aim
at investigating other complex networks models in the reservoir
structure as well as extending our experiments to a higher number
of real-world applications.
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