
An interactive programme for weighted Steiner trees

Marcelo Zanchetta do Nascimento1, Valério Ramos Batista2,
Wendhel Raffa Coimbra3

1 UFU-FACOM, av. João Neves de Ávila 2121, Bl.A, 38400-902, Uberlândia-MG, Brazil

Tel: +55-34-3239-4571, Email: marcelo.zanchetta@gmail.com
2 CMCC-UFABC, r. Sta. Adélia 166, Bl.B, 09210-170 St. André-SP, Brazil

3 UFMS, rod. BR 497 km 12, 79500-000 Paranaiba-MS, Brazil

Abstract. We introduce a fully written programmed code with a supervised method
for generating weighted Steiner trees. Our choice of the programming language, and the
use of well-known theorems from Geometry and Complex Analysis, allowed this method
to be implemented with only 764 lines of effective source code. This eases the understand-
ing and the handling of this beta version for future developments.
Keywords: weighted minimal Steiner trees, programmed code

1 Introduction

One of the main problems at implementing multicast in Wide Area Networks (WAN) is
the high cost of transmissions between terminals. Cost reduction is attained by adding
routers to the network, but this increases complexity (see [14, 17]). Steiner trees have
long been used in order to optimise routes, aiming at the lowest cost possible (see [3, 12]).

Although the Steiner Minimal Tree (SMT) problem belongs to the NP-hard class (see
[9]), it can be exactly solved by fast algorithms for terminals in thousands. The best
example is the GeoSteiner algorithm. Essentially, it checks for terminals that are as close
as possible to vertices of equilateral triangles. Afterwards, it prunes sub-optimal trees. See

http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner

for details.

GeoSteiner is amazingly fast for terminals positioned at random. However, it is not
the case when they follow a pattern. For instance, we use 4GB of RAM, microproces-
sor Intel Core i5 3.2GHz, and operating system Linux Ubuntu 12.04. With this setting
GeoSteiner takes 73.02s to generate Figure 1. This time drops to only 0.06s when the 31
terminals are at random. Figure 1 was obtained through the datafile pat.tsp contained
in stree.zip, which we shall discuss in Section 3. Compare it with Figure 2.

Moreover, the GeoSteiner algorithm cannot be adapted to find weighted minimal

1

Steiner trees. This fact, together with the slowness in patterned cases, is precisely due to
the strategy of looking for equilateral triangles.

Figure 1: Non-patterned GeoSteiner output. Figure 2: Patterned SMT drawn with Xfig.

Given a graph G = (V,E,w), a subset S ⊂ V and a weight function w, a weighted
minimal Steiner tree T ⊂ G is one that spans all vertices of S and also minimises the
total weight. This classical definition can be specialised to edge- or node-weight when the
domain of w is either E of V , respectively. The problem has further variations, like for
unity disk graphs and restrictions on w, that have been studied recently [1, 5, 15, 19].

These and other works make use of heuristics. They are devoted to non-supervised
methods that are fast at generating weighted Steiner trees with good chances of approach-
ing the minimal weight. But if one really seeks a weighted minimal Steiner tree, there are
little chances that non-supervised methods will find it, unless applied to a few number of
vertices.

Of course, a supervised method that includes some feedback to the user increases the
chances of finding this tree. Specially if we can rely on the skill and good guesses of a
trained user. In the last paragraph from §6 of [10] the very authors had already made this
kind of comment. Of course, their work was devoted to the standard Euclidean case and
is previous to GeoSteiner by three decades. However, their comment is still modern in
the sense that one cannot always predict whether a fast algorithm exists to solve a given
problem.

In that same work, Gilbert and Pollak conjectured that a Steiner minimal tree must
have its length in the interval Lprim · [

√
3/2, 1], where Lprim is the length of the minimal

spanning tree. This one can be obtained by Prim’s algorithm [16], and here we shall name
it after him for concision and clarity. According to [7], this conjecture is right. If so, any
Steiner tree obtained from Prim’s can improve it of at most 13.4%.

It seems little, but if a connection is used extensively, this 13.4% represents a great
saving in the long-term. Moreover, in [13] the authors claim that the Gilbert and Pollak’s
conjecture is not completely answered yet. Thus, it might even happen that we get an
SMT under this ratio.

2

Of course, a supervised programme is not suitable for thousands of terminals, except
for a long-term project distributed to a team of users. But even this exception does
not apply to extreme cases, like VLSI-design through rectilinear Steiner trees, in which
millions of terminals are needed. However, terminals in hundreds are still the case in
several applications, like sound and video cards. Their frequent access makes it desirable
to minimise delay as much as possible. Even a 1% improvement would count in this case.

Indeed, weighted Steiner trees have many practical applications. Among others, it is
used in network formation games, computational sustainability and electric power net-
works [6, 11, 2].

We introduce a fully written programmed code for generating weighted Steiner trees.
Our choice of a programming language was made in order to spare the graphical environ-
ment, which Matlab already brings in a very well built-in way. Since we have not used
toolboxes, this code can be easily adapted to a free software like Octave, though this one
has a simpler graphical user interface. Anyway, this produces a much shorter code, easier
to understand and to handle for future developments. Indeed, the present version of our
programme has didactic purposes, for it is accessible even to undergraduate students in
Computer Science.

Many original ideas were used to write our code. They are based on theorems normally
relegated to Math courses only, specially Geometry and Complex Analysis. But the cho-
sen programming language allows these theoretical results to be implemented into elegant
and efficient codes. The reader can download some of them from the link Softwares on
the webpage

http://www.facom.ufu.br/~nascimento

and the full programme in p-code at the same address in order to make tests. As an
example, the file Prim.m runs with only 21 lines of source code. In total, stree.m and its
related to programmes have only 855 lines, which drop to 764 if we do not count sread.m
and swrite.m (for graphical input and output of terminal points).

The aim of this paper is to introduce the programme stree.m, totally written with
original ideas we have just mentioned in the previous paragraph. The rest is organised
as follows: in Section 2 we prove some results used in our paper. In Section 3 we briefly
describe how the programme works. It draws full tree stretches automatically with the
mouse, and Section 4 gives details and hints about it. Section 5 is devoted to explaining
some theorems that we have used to write the programme. Section 6 presents some of
the geometrical and analytical ideas that were used to implement stree.m, and we finally
make our conclusions in Section 7. The full source code will be available in future.

3

2 Preliminaries

As we mentioned in the Introduction, the tree of Prim is frequently used to construct
a Steiner tree. Prim’s algorithm is easily adaptable to find the minimal spanning tree
(MST) for terminals that are weighted as follows:

Definition 2.1. Consider the tree T = (V,E) with weight function w : V → R
+ and 0-1

adjacency matrix aij. Then T is an MST if it minimises the total cost C given by

C =
∑

i<j

aij(wi + wj)||Vi − Vj||, (1)

where ||Vi−Vj|| = 1

2
(wi+wj)|Vi−Vj| is the connection cost between terminals Vi and Vj.

REMARK: When w : V → {1} we have the Euclidean non-weighted case.

For a given set of terminals V = {V1, . . . , Vn} and a weight function w : V → R
+, we

can find the edges E that minimise the cost C in (1) and result in an MST T = (V,E).
But if we can add extra points S = {S1, . . . , Sm} to V , namely Ṽ = V ∪ S, we shall find
the corresponding T̃ = (Ṽ , Ẽ) such that C̃ ≤ C. We claim that C̃ < C exactly when
S 6= ∅, providing one chooses a suitable extension w̃ : Ṽ → R

+ of the weight function.

The following lemma shows how to make this choice when n = 3 and m = 1 (see
Figure 3).

Lemma 2.1. Consider a triangle with vertex weights a, b and c, and suppose it ad-
mits a classical (Euclidean) Steiner point. If s ≤ min{a, b, c} is the weight of the Steiner
point, then its connection with the vertices will cost less than any other connection through
the vertices only.

a

c

b

s

L

L

Figure 3: Adding a Steiner point to three weighted terminals.

Proof. Let ℓ1, ℓ2, ℓ3 be the distance from the Steiner point to the vertices a, b and c,
respectively. We want to prove that

(a+ s)ℓ1 + (b+ s)ℓ2 + (c+ s)ℓ3 < (a+ b)L+ (b+ c)L. (2)

4

Case 1: b ≤ a ≤ c. The law of cosines imply ℓ1 + ℓ2/2 < L and ℓ3 + ℓ2/2 < L. Hence
aℓ1 + bℓ2 + cℓ3 < aL+ cL. Moreover, s ≤ b and ℓ1 + ℓ2 + ℓ3 < L+ L. This implies (2).

Case 2: a ≤ b ≤ c. We have (aℓ1 + bℓ2/2) + (bℓ2/2 + cℓ3) < bL + cL. Since s ≤ a
and aL ≤ bL, then (2) follows.

Case 3: a ≤ c ≤ b. Notice that (aℓ1 + bℓ2/2) + (bℓ2/2 + cℓ3) ≤ b(L+ L). Since s ≤ a and
aL ≤ cL, then (2) holds again.

q.e.d.

Lemma 2.2. Consider a full Steiner tree with n ≥ 3 terminals A1, . . . , An and Steiner
points S1, . . . , Sn−2. Add weights to their respective terminals as ai, 1 ≤ i ≤ n, and to
the Steiner points as si = min{a1, . . . , an} ∀ i. The resulting weighted tree is then a local
minimum of C.

Proof. Based upon Lemma 2.1, we see that a sufficiently small displacement of any Si

will increase the weighted length of the tree. Therefore, it characterises a local minimum
of C.

q.e.d.

Regarding the Euclidean non-weighted case, in §§3.7 of [10] the authors show that any
Steiner tree can be decomposed into a union of full Steiner trees. By adding weights as
described in Lemma 2.2, we can run through all Steiner trees T̃ = (Ṽ , Ẽ) determined by
V and compute the corresponding C. There is a finite number of such trees, hence the
least C will determine T̃ as an MST.

The most important consequence of Lemmas 2.1 and 2.2 is that Steiner points can be
added exactly as in the Euclidean case for arbitrary n ≥ 3. The resulting MST T̃ = (Ṽ , Ẽ)
coincides with a Euclidean non-weighted Steiner tree, which will not be necessarily the
Euclidean SMT. Anyway, many properties proved in [10] still hold for T̃ : Convex hull,
Maxwell’s Theorem, Lune and Wedge properties.

3 Getting started

This present section is like a quick manual to the programme. The readers that are more
interested in mathematical results can read it through or simply go straight to Section
4. Download stree.zip from http://www.facom.ufu.br/~nascimento/software.html

and extract it in a folder. Enter “stree” at the Matlab prompt. You will get the following
message:

Please adjust terminal window to show full picture.
Give a filename to open or press Enter to choose points.

5

Adjusting the terminal window will prevent figures from hiding it. Now you may either
give an existing datafile of terminal points for the tree, or plot one as follows: position
the mouse where you want to add a terminal, then either type any number from 0 to 9
or click the mouse left-button.

For the time being, you can enter only integer weights from 1 to 9, namely the number
you typed. As a matter of fact, either 0 or the mouse left-button will attribute weight
1 to the new terminal, the only value that is omitted by default (see Figures 4 and 5).
However, the terminals can be saved in a text file. Edit arbitrary weights there if you
want to.

Some test-files with extension “.txt” can be found in stree.zip, and we shall take
them here for comments.

Press the Enter key after you either finish plotting points or type the filename without
extension, for instance test0. Figure 4 will appear with the weighted tree of Prim, and
Figure 5 is for you to draw a weighted Steiner tree. Our purpose is to find the cheapest
tree, and Figure 4 can help make good choices.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

Figure 4: The weighted tree of Prim. Figure 5: Terminals joined by cyan edges.

Notice that a weighted tree of Prim can have self-intersections, as shown in Figure 4.
This never happens to a weighted Steiner tree, because Lemmas 2.1 and 2.2 imply that
any self-intersection can be split into two Steiner points in order to lower the cost.

In Figure 5 the cyan polygon is obtained by the Convex Hull and Lune properties de-
scribed in [10]. It is called “Steiner hull”. From this point on some hints and instructions
to proceed are printed in the Matlab terminal window, and all actions will be with the

6

mouse. For the weighted tree of Prim, its length is printed as follows:

The length of a weighted Prim is
ans =
802.0910

and so the user can compare this value with the one obtained after a new tree is build.
From the first mouse menu, now printed in the Matlab terminal window, you can read
the drawing options:

Press button
l(+l)+r to omit point(s);
r alone to try full tree;
middle for more options.

For instance, choose (39, 15) as the first and (65, 70) as the second point with the left
button, and then press the right button. A dotted black polygonal will blink to indicate
a remaining cyan polygon. You will be left with a group of terminals very likely to give a
full Steiner subtree. It will be drawn by pressing the right mouse button alone, no matter
the cursor is. See Figures 6 and 7.

From the first to the second point, one goes counterclockwise along the black polygon.
It is a standard of stree.m, but if you mistake it before clicking the right button, choose
extra point(s) and the programme will treat the latter two as “first” and “second”. Other-
wise, if you mistake that standard and realise it only after having clicked the right button,
it is again no problem. The first menu is re-printed on the screen, and now you can undo
your previous step as follows: press the middle button for the second mouse menu, namely:

Press button
left to return drawing;
right to undo previous step;
middle for retouches.

The right button undoes your mistake and you get back again to the first menu.

You might now want to take (75, 55) and then (39, 15) to get a Steiner subtree out of
a quadrilateral. That will work out, but Figure 4 does not hint this way. So try instead
(75, 55) and (22, 24) and you will get Figure 8. As a matter of fact, our strategy is to
build full Steiner subtrees that contain a cheap terminal in order to minimise the total
cost. That is why Prim’s weighted tree is not the only hint to build the MST.

From the second mouse menu, we can now click on the middle button for retouches.
By the third mouse menu,

7

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

Figure 6: The dotted black polygonal. Figure 7: A Steiner subtree.

Thrice Left = Steiner Point
Left + n x Right = Polygonal
Middle = Terminate

which is also the last one, you should click left on (71, 42), (39, 45) and (75, 55) to get a
Steiner point out of three terminals (see Figure 9). The order you choose these points is
unimportant. Now click left on (90, 62) and then right on (75, 55), or vice-versa. Finally,
connect both (65, 68) and (50, 71). The middle mouse button concludes your drawing (see
Figure 10) and informs that Ltree = 598.3593. Also, a full border is printed when you
terminate execution.

It is worthwhile to perform several tests no matter how good our strategies may seem.
Figure 11 shows another try on test0 which however resulted in Ltree = 646.2392.

4 Full Tree Stretches

In the previous section we mentioned Figure 11, which contains a group of terminals con-
nected by a full Steiner subtree. This subtree is obtained by the second option of the
first mouse menu. Now we present some details and hints, so that the intuitive mind will
hardly be wrong at identifying such groups.

When will a subgroup of terminals admit connection by a full Steiner tree? For the
time being, we answer this question providing each Steiner point is directly connected to
a terminal of the subgroup (see Theorem 5.3 below). In general, it is when you have a
“good” zigzag polygonal connecting them. For instance, run “Mksaw” for the terminal
data test1.txt, and do the same to “stree”. You will get Figures 12 and 13.

8

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

Figure 8: Trying cheap Steiner subtrees. Figure 9: Retouching the last connections.

This example shows that stree will give an answer, even if no full tree exists. How-
ever, it relies on your guesses. Whenever they are wrong, choose the “undo” option from
the second mouse menu, or simply run again “stree” if most of your terminals were a
group like in Figure 12. This second case is illustrated in Figures 14 and 15. It shows
what is wrong: the zigzag is quite irregular.

Here are some hints to identify good zigzags: the group of points should form a strip,
which can scroll in any direction. The strip can be slightly bent or waved, but its width
may oscillate even quite a lot. However, despite all hints we give only the practice will
really make you recognise the good zigzags very quickly.

The next section discusses some theorems from Geometry and Complex Analysis that
made the stree-codes very short.

5 Some Theorems used in stree

The following theorems were used to implement Rprim.m and Mksaw.m, respectively.

Theorem 5.1. Let S be a finite set of points with at least two elements. In this case,
there are P, Q ∈ S such that the distance between P and Q is maximal. The segment PQ
is called the diameter of S.

Proof. It is already explicitly given by lines 2-3 of the open code Rprim.m, and so
we shall omit it here.

9

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

4

5

2

26

5

2

5

3

7

6

9

Figure 10: The completed Steiner tree. Figure 11: Another try on test0.

Theorem 5.2. Let Q be a quadrilateral with consecutive vertices Pi, i = 1, . . . , 4. Let
veci−2 = Pi − P1, i ≥ 2, and V eci−1 = Pi − P4, i ≤ 3. Then Q is convex precisely when
vec1 is between vec0, vec2, and also V ec1 is between V ec0, V ec2.

Proof. By definition, Q is convex exactly when P2, P4 are at opposite sides of
←→
P1P3

and P1, P3 are at opposite sides of
←→
P2P4 . This is equivalent to the assertion of the Theo-

rem.

Theorem 5.3. Let A1, . . . , An be n ≥ 3 terminals in the complex plane C connected
by a minimal full Steiner tree S. Let V = {V1, . . . , Vs} be the set of Steiner points of S.
Suppose that each element in V admits a terminal such that both are the extremes of a
segment in S. In this case, there exists Vi ∈ V that determines all points in V \ {Vi}.

Proof. By following the arguments from §3.4 of [10], we have s = n − 2 and only
one segment in S with extreme Ak, ∀ k ∈ {1, . . . , n}. Since s ≥ 1, the arguments from
§6 of [10] apply. Namely, if each element of V were connected to a single terminal, then
we would have s = n, a contradiction. Hence, there exists Vi ∈ V that connects two
terminals. Up to re-indexing, these are A1, A2 and i = 1.

Now consider the ray given by

r(t) = V1 + t ·
(V1 − A1

|V1 − A1|
+

V1 − A2

|V1 − A2|
)

, t ∈ R+.

If n = 3, then it is clear that a unique positive τ gives r(τ) = A3. Now take n > 3. For
each positive t consider the rays ρt = r(t) + (V1−A1) ·R+ and ̺t = r(t) + (V1−A2) ·R+.
Let A = {A3, . . . , An} and take all positive t such that (ρt ∪ ̺t) ∩A 6= ∅. They will make
a finite set {t3, . . . , tm} with m ≤ n− 2.

10

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 12: A “good” zigzag. Figure 13: An “almost” full tree.

Since V1 must be connected with another Steiner point, say V2 (after re-indexing),
then V2 = r(tk) for a certain k ∈ {1, . . . ,m}. Of course, r(tk) is connected to a terminal
in A. Up to re-indexing, it is Ak.

In order to find k, we must repeat the same arguments with V1, Ak, r(tk) respectively
in the place of A1, A2, V1, and so on. This will give at most s! full trees. One of them
is minimal, whence all points V2, . . . , Vs are determined. This concludes the proof of the
Theorem.

Our next section explains a bit of stree.m and the open codes Rprim.m and Mksaw.m,
which exemplify the applications of the theorems discussed in this present section. They
correspond to rprim.p and mksaw.p, which are two of the files that stree.zip contains.

6 Efficient Codes from Geometry and Complex Anal-

ysis

Figure 16 describes our pseudocode, which works recursively while the connection matrix
is not complete.

Initially, stree.m calls lune.m and cvxhull.m to inscribe the terminal points into the
Steiner hull, namely a polygon coloured cyan as shown in Figure 5. In general, there will
be isolated terminals inside the polygon. The ones that build its vertices are marked by
stree.m with either 0 or 1, which mean “greater” and “lesser” than 120◦, respectively.
The characters 0 and 1 are stored in a string s. For instance, if s contains a stretch 010,
this hints to three terminals joined by a Steiner point.

11

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 14: A wrong guess. Figure 15: A “bad” zigzag.

stree Pseudocode

Input: Set of terminals
Output: Steiner tree
1. Pts ← terminals, Connexion Matriz ← 0
2. Tree of Prim ← Compute Tree of Prim(Pts)
3. Steiner hull ← Compute Steiner hull(Pts)
4. While Connexion Matriz implies Stree non-connected

i. Subset Pts ← User’s Choice of a Subgroup(Pts)
ii. Subtree ← Compute Connection(Subset Pts)
iii. If Subtree not OK, redo Step i
iv. Else Connexion Matriz ← Connection(Subset Pts)

5. return Steiner tree (and its length)

Figure 16: The pseudocode of stree.m algorithm.

But stree.m does not connect them automatically, for this hint might not lead to the
shortest tree. We use the variable s for purposes like building zigzags out of stretches
01...10. Of course, not all zigzags are good, but the programme will try them back and
forth, and even split them in parts.

Of course, lune.m and cvxhull.m are based upon the Convex Hull and Lune proper-
ties described in [10]. They do not give a polygon with zigzags, but with stretches like in
Figure 17. Hence, stree.m calls mksaw.m in order to get the zigzag.

If you want to test these procedures, run “Cvxhull” for the terminal data test2.txt

and save the output with the name test3. A figure will show the original input order of
the terminals (dotted lines), and a blue polygon involving them (the convex hull). Then

12

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 17: A “01. . . 10” stretch. Figure 18: Rearrangement of Figure 17 by “Mksaw”.

run “Lune” for test3.txt and name the output test4.

Now we are going to explain the open codes Rprim.m and Mksaw.m, which will finally
generate a zigzag out of test2.txt (the initial datafile). According to Theorem 5.1, there
is a diameter for the points in test2.txt, and lines 2-3 of Rprim.m are precisely the com-
mands to find them, namely Pts(h(k)) and Pts(k). However, you must run “Rprim.m”
for the re-ordered data test4.

Now we project all points along the diameter and re-order them by increasing distance
between their projection and the extreme Pts(k). That is what the while-loop does in
lines 11 to 19. The re-ordered input is restored in line 20, and may be saved in line 21.
We did it in test5.txt, which Mksaw.m finally re-orders into a zigzag.

Notice that the terminals from test5.txt are in zigzag order except for one single
square wavelet. However, the open code Mksaw.m works well even if you have a totally
square wave. Enter the terminal points in an order that makes such a wave. We have
used test6.txt to generate Figure 17. This precaution is not necessary when you run
stree.m, for it will rearrange the points as explained above.

By walking along the square wave from the very first point on, two consecutive steps
will always lead to a vertex that makes a quadrilateral Q with the following two. That is
why the while-loop ends in pts=pts(2:end).

Now look at lines 4 to 9 of Mksaw.m and apply Theorem 5.2 to Q. The symbol × will
indicate the vector product. From Geometry, the convexity criteria given by this theorem
is equivalent to vec0 × vec1, vec2 × vec1 pointing in opposite directions. The same holds
for V ec0 × V ec1, V ec2 × V ec1. Taking these vectors as complex numbers in C × R, say

13

vec1 = a+ ib = (a, b, 0) and vec0 = c+ id = (c, d, 0), we have vec0× vec1 = (0, 0, bc− ad),
namely bc− ad = Im{vec1 · vec0}. Thus, from Complex Analysis the vectors vec0× vec1,
vec2 × vec1 will point in opposite directions precisely when the signs of Im{vec1 · vec0}
and Im{vec1 · vec2} are opposite. Hence, lines 10-11 from Mksaw.m check if Q is convex.
In this case, the programme makes a sawtooth out of Q. Then we go two steps forward
with the command pts=pts(2:end); and the while-loop repeats the process, unless we
have already came to the end of the line.

7 Conclusions

Differently from the approach of trying a fully automated method, we propose to take
advantage of the good choices that a user can make. Many attributes like intuition, guess,
practice and a bird’s-eye view are valuable means that one cannot translate into any pro-
gramming language. Hence, as long as a task is feasible with the help of supervision
we suggest taking it into account, besides the fully automated methods. This proposal
is not new, but we endeavour to obtain a code that is both easy to run and to understand.

The programme stree is still in the beta version. Further improvements will include
more feedback to the user. For instance, the tree will be also checked with Maxwell’s
Theorem and the (Double) Wedge properties (see [10] for details). Some tests can be
implemented to run while the users are drawing, so that they may also undo steps which
just seem successful with this present version.

Moreover, stree still works strongly devoted to real Steiner trees, which in fact should
be adapted to practical purposes. For instance, outputs consider even Steiner points ex-
tremely close to a terminal. By implementing such a tree to a multicast network, those
Steiner points can be unnecessary and even costly. In future, the user will decide on the
tolerance regarding the minimum distance that terminals and Steiner points will keep
apart.

By the way, it is even preferable to implement multicast networks with a minimum
number of Steiner points, because of the high cost of the routers. This is also the case
of WDM optical networks (see [4]). Therefore, it will be useful to have future versions of
stree devoted to the construction of such trees. The rectilinear Steiner trees are also of
interest (see [8, 18]), and then another option like stree to be developed.

Acknowledgement

Many improvements in this paper were due to the careful analyses carried out by ref-
erees. We thank them for their valuable help. We are also grateful to Cláudio Nogueira
de Meneses, professor at the Federal University of ABC, for his assistance with weighted
graphs.

14

References

[1] S. Angelopoulos, The node-weighted Steiner problem in graphs of restricted node
weights, in: Algorithm Theory-SWAT, Springer, Berlin and Heidelberg, 2006, pp. 208-
219.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler and T. Roughgarden,
The price of stability for network design with fair cost allocation, in: Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 295-304.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M.
Protasi, Complexity and approximation: combinatorial optimization problems and their
approximability properties, Springer-Verlag, Berlin and Heidelberg, 1999.

[4] D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang and G. Xue, Approximations for
Steiner trees with minimum number of Steiner points, Theoretical Computer Science
262 (2001), 83-99.

[5] E.D. Demaine, M. Hajiaghayi and P.N. Klein, Node-weighted Steiner tree and group
Steiner tree in planar graphs, in: Automata, Languages and Programming, Springer,
Berlin and Heidelberg, 2009, pp. 328-340.

[6] B. Dilkina and C.P. Gomes, Solving connected subgraph problems in wildlife con-
servation, in: Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, Springer, Berlin and Heidelberg, 2010, pp. 102-
116.

[7] D.-Z. Du and F.K. Hwang, A proof of the Gilbert-Pollak conjecture on the Steiner
ratio, Algorithmica 7 (1992), 121-135.

[8] U. Fößmeier and M. Kaufmann, Solving rectilinear Steiner tree problems exactly in
theory and practice, in: Proceedings of the 5th European Symposium on Algorithms,
Springer-Verlag, Berlin and Heidelberg, 1997, pp. 171-185.

[9] M.R. Garey, R.L. Graham and D.S. Johnson, The complexity of computing Steiner
minimal trees, SIAM Journal of Applied Mathematics 32 (1977), 835-859.

[10] E.N. Gilbert and H.O. Pollak, Steiner minimal trees, SIAM Journal of Applied Math-
ematics 16 (1968), 1-29.

[11] S. Guha, A. Moss, J.S. Naor and B. Schieber, Efficient recovery from power outage,
in: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, ACM,
1999, pp. 574-582.

[12] X.-D. Hu, T.-P. Shuai, X. Jia and M.-H. Zhang, Multicast routing and wavelength
assignment in WDM networks with limited drop-offs, in: IEEE INFOCOM, 2004,
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1354520

[13] N. Innami, B.H. Kim, Y. Mashiko and K. Shiohama, The Steiner ratio conjecture of
Gilbert-Pollak may still be open, Algorithmica 57 (2010), 869-872.

[14] X. Jia, X.-D. Hu, M. Lee, D.-Z. Du and J. Gu., Optimization of wavelength as-
signment for QoS multicast in WDM networks, IEEE Trans. on Communications 49

(2001), 341-350.
[15] X. Li, X.-H. Xu, F. Zou, H. Du, P. Wan, Y. Wang and W. Wu, A PTAS for node-

weighted Steiner tree in unit disk graphs, in: Combinatorial Optimization and Appli-
cations, Springer, Berlin and Heidelberg, 2009, pp. 36-48.

[16] R.C. Prim, Shortest connection networks and some generalizations, Bell System Tech-

15

nical Journal 36 (1957), 1389-1401.
[17] L.H. Sahasrabuddhe and B. Mukherjee, Multicast routing algorithms and protocols:

a tutorial, IEEE Network 14 (2001), 90-102.
[18] M. Zachariasen, Rectilinear full Steiner tree generation, Technical Report DIKU-TR-

97/29, University of Copenhagen, 1997, http://www.diku.dk
[19] F. Zou, X. Li, S. Gao and W. Wu, Node-weighted Steiner tree approximation in unit

disk graphs, Journal of Combinatorial Optimization 18 (2009), 342-349.

16

